GROUP 1. Run title
TEXT(De Laval Nozzle X Direction
TITLE
DISPLAY
Transonic flow in a convergent-divergent nozzle is
considered. The throat is situated at one-third of the
length of the duct. The geometry of the nozzle is:
convergent section, inlet area = 1.34; throat area= 1.0
divergent section, outlet area = 1.65.
The inlet Mach number is 0.5, and the design exit Mach
number is 0.6 for which Pexit/Po =0.784.
Consequently, a standing shock wave is created in the
divergent section.
The alteration of the cross-sectional area as a function
of x is provided by means of the east-face porosity factor.
ENDDIS
Locally-defined parameters:
GAMMA Specific heats ratio
GASCON Perfect gas constant
P0 Stagnation pressure
T0 Stagnation temperature
RHO0 Stagnation density
MACHIN Inlet MACH number
RHOIN Inlet density
CIN Inlet sound speed
VELIN Inlet gas velocity
PIN Inlet pressure
PEXIT Exit pressure
INTEGER(IXTHR);REAL(GAMMA,GASCON,PEXIT,GAM1,POWER)
REAL(TINDT0,RHO0,T0,P0,RHOIN,MACHIN,PIN,VELIN,CIN)
REAL(CMASS,VMASS)
** Gas constants
GAMMA=1.4;GASCON=287.0
GAM1=GAMMA-1.0;POWER=GAMMA/(GAMMA-1.0)
** Total pressure, temperature, density, inlet Mach Number
P0=1.0; T0=1.0;RHO0=P0/(GASCON*T0); MACHIN=0.5
** Inlet sound speed & velocity
CIN=(GAMMA*P0/RHO0)**.5; VELIN=MACHIN*CIN
** Inlet static pressure & density
TINDT0=1./(1.+GAM1/2.*MACHIN**2)
RHO1B=1./GAMMA; RHO1A=RHO0/(P0**RHO1B)
PIN=P0*TINDT0**POWER; RHOIN=RHO1A*PIN**RHO1B
** Exit pressure
PEXIT=P0*0.784
GROUP 3. X-direction grid specification
GRDPWR(X,60,1.0,1.0)
GROUP 7. Variables stored, solved & named
SOLVE(P1,U1);STORE(RHO1,EPOR)
GROUP 8. Terms (in differential equations) & devices
** Remove viscous terms
TERMS(U1,P,P,N,P,P,P)
GROUP 9. Properties of the medium (or media)
** Select isentropic gas law
RHO1=COMPRESS;DRH1DP=COMPRESS
GROUP 11. Initialization of variable or porosity fields
INIADD=F
FIINIT(U1)=2.0*VELIN;FIINIT(RHO1)=0.5*RHOIN
FIINIT(P1)=0.5*(P0+PEXIT)
** Convergent section: inlet area = 1.34; throat area= 1.0
PATCH(CONV,LINVLX,1,NX/3,1,1,1,1,1,1)
INIT(CONV,EPOR,-1.0,1.34)
** Divergent section: outlet area = 1.65
PATCH(DIV,LINVLX,NX/3+1,NX,1,1,1,1,1,1)
INIT(DIV,EPOR,1.0,1.0)
GROUP 13. Boundary conditions and special sources
** The prescription of the stagnation pressure at the
nozzle inlet is obtained from the following relationship
between the stagnation pressure and the inlet values
of Mach number and density:
p0=rhoin*[1+0.5*(gamma-1)*Min**2]**[gamma/(gamma-1)].
When the inlet mass-flow per unit area is made the
subject of this equation, the familiar co & val form
results:
rhoin*uin=co*(val-pP), where,
co=2*gamma/[uin*(gamma-1)], val=p0*rhoin/rho0.
For this case, the inlet velocity which appears in co
ie. uin is assumed known. Strictly speaking this
quantity is a function of the calculation, and should
hence be re-calculated in GROUND as the calculation
proceeds.
CMASS=2.*POWER/VELIN;VMASS=RHOIN*P0/RHO0
PATCH(INLET,WEST,1,1,1,1,1,1,1,1)
COVAL(INLET,P1,CMASS,VMASS)
COVAL(INLET,U1,ONLYMS,VELIN)
** The static pressure is prescribed at the outlet
PATCH(OUTLET,EAST,NX,NX,1,1,1,1,1,1)
COVAL(OUTLET,P1,10.,PEXIT)
COVAL(OUTLET,U1,ONLYMS,0.0)
GROUP 15. Termination of sweeps
LSWEEP=100
GROUP 17. Under-relaxation devices
RELAX(U1,FALSDT,0.05*XULAST/VELIN)
GROUP 22. Spot-value print-out
IXMON=NX-5;TSTSWP=LSWEEP/10;ITABL=1
GROUP 23. Field print-out and plot control
IXPRF=NX/2;NXPRIN=NX/10;ORSIZ=.4
PATCH(PLOT,PROFIL,1,NX,1,1,1,1,1,1);PLOT(PLOT,P1,0,0)
PLOT(PLOT,U1,0,0)