TALK=T;RUN(1,1)
PHOTON USE
p
vi x;up z
con mark x 1 fil;0.01
gr x 1
msg MARK specifying the inlet areas
pause
con cl;gr cl;red
gr ou x 1
vec x 1 sh
msg Velocity vectors at the inlet plane
pause
gr cl;ve cl
vi y;up z
gr ou y 5
vec y 5 sh
msg Velocity vectors at the plane of symmetry
msg Press E to end
ENDUSE
DISPLAY
This example shows how to use grid-free features of
PLANT for calculation of scaling factors resulting from
the presentation of circle inlets on Cartesian
coordinate system.
The problem is to introduce the correct mass and
momentum in-fluxes for the concentric inlets at the east
wall of lower part of 3D rectangular chamber with a
swirl in annular secondary flow inlet.
It is supposed that MARK of unity value marks the
primary inlet area, while MARK=2 is used to specify
secondary inlet cells.
ENDDIS
PLANTBEGIN
REAL(PI);PI=3.14159
REAL(UPRIM,USEC,USWIRL,YIC,ZIC)
** Primary inlet velocity
UPRIM= 5.
** Secondary inlet velocity
USEC= 10.
** Secondary inlet constant swirl angular velocity
USWIRL=25.
** Origin of inlet center
* Z-coordinate
ZIC=5.25
* Y-coordinate
YIC=5.00
** Inlet diameters
REAL(RAD1,RAD2)
RAD1=2.0;RAD2=4.
** Drill the hole of outer diameter of secondary inlet
PATCH(INITMRK1,INIVAL,1,1,1,NY,1,NZ,1,1)
VAL=SPHERE(2.0,0.0,5.0,5.25,4.0)
INIT (INITMRK1,MARK,0.,GRND)
PRINT(VAL1=VAL)
** Drill the hole of primary inlet diameter
PATCH(INITMRK2,INIVAL,1,1,1,NY,1,NZ,1,1)
VAL=SPHERE(1.0,0.0,5.0,5.25,2.0)
INIT (INITMRK2,MARK,0.,GRND)
PRINT(VAL2=VAL)
Two circular holes are "drilled" at the west face of the
domain by way of SPHERE function. The provide the
primary inlet of 2 m diameter ( MARK=1) and secondary
annulus of 1 m width ( MARK=2) . The origins of inlet
center are at X=0.0, YIC and ZIC.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Primary inlet mass flux coefficient
PRIMF=SUM(AEAST/(:PI:*:RAD1:**2))
TEXT(Primary inlet mass flux coefficient)
REGION() 1 /ISWEEP.LE.2
Here, primary inlet mass flux coefficient, which is
reciprocal to scaling factor representing ratio of actual
to cartesian areas is calculated as a sum over all cells
occupied by primary inlet marker.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Secondary inlet mass flux coefficient
SECNF=SUM(AEAST/(:PI:*(:RAD2:**2-:RAD1:**2)))
TEXT(Secondary inlet mass flux coefficient)
REGION() 2 /ISWEEP.LE.2
Here, secondary inlet mass flux coefficient, which is
reciprocal to scaling factor representing ratio of actual
to cartesian areas is calculated as a sum over all cells
occupied by secondary inlet marker.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Primary inlet mass flux
PATCH(SS001,WEST,1,NX,1,NY,1,NZ,1,1)
CO =FIXFLU
VAL=:RHO1:*:UPRIM:/PRIMF/FIXFLU
COVAL(SS001,P1,GRND,GRND)
Primary inlet mass flux is corrected above for all cells
occupied by primary inlet marker appearing in the number
of PATCH name, SS001.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Primary inlet momentum flux
CO =0.0
VAL=:UPRIM:
COVAL(SS001,U1,GRND,GRND)
The corrected momentum influx will be calculated
following the above satement.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Secondary inlet mass flux
PATCH(SS002,WEST,1,NX,1,NY,1,NZ,1,1)
CO =FIXFLU
VAL=:RHO1:*:USEC:/SECNF/FIXFLU
COVAL(SS002,P1,GRND,GRND)
Secondary inlet mass flux is corrected above for all
cells occupied by primary inlet marker appearing in the
number of PATCH name, SS002.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Secondary inlet momentum flux
CO =0.0
VAL=:USEC:
COVAL(SS002,U1,GRND,GRND)
The corrected longitudinal momentum influx will be
calculated following the above statement.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Secondary inlet V1 swirl flux
CO =0.0
VAL=:USWIRL:*(ZGNZ-:ZIC:)/ SQRT((YV2D-:YIC:$
)**2+(ZGNZ-:ZIC:)**2)
COVAL(SS002,V1,GRND,GRND)
The corrected lateral momentum influx will be calculated
following the above statement.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
** Secondary inlet W1 swirl flux
CO =0.0
VAL=-:USWIRL:*(YG2D-:YIC:)/ SQRT((YG2D-:YIC:)**$
2+(ZWNZ-:ZIC:)**2)
COVAL(SS002,W1,GRND,GRND)
The corrected Z-wise momentum influx will be calculated
following the above statement.
<<<<<<<<<<<<<<<<<<<<<<< Comment ends <<<<<<<<<<<<<<<<<<<<<
PLANTEND
************************************************************
Group 1. Run Title and Number
************************************************************
************************************************************
TEXT(In-Form equivalent of PLANT case Z615 )
************************************************************
************************************************************
IRUNN = 1 ;LIBREF = 615
************************************************************
Group 2. Time dependence
STEADY = T
************************************************************
Group 3. X-Direction Grid Spacing
CARTES = T
NX = 30
XULAST =10.
XFRAC(1)=0.033333 ;XFRAC(2)=0.066667
XFRAC(3)=0.1 ;XFRAC(4)=0.133333
XFRAC(5)=0.166667 ;XFRAC(6)=0.2
XFRAC(7)=0.233333 ;XFRAC(8)=0.266667
XFRAC(9)=0.3 ;XFRAC(10)=0.333333
XFRAC(11)=0.366667 ;XFRAC(12)=0.4
XFRAC(13)=0.433333 ;XFRAC(14)=0.466667
XFRAC(15)=0.5 ;XFRAC(16)=0.533333
XFRAC(17)=0.566667 ;XFRAC(18)=0.6
XFRAC(19)=0.633333 ;XFRAC(20)=0.666667
XFRAC(21)=0.7 ;XFRAC(22)=0.733333
XFRAC(23)=0.766667 ;XFRAC(24)=0.8
XFRAC(25)=0.833333 ;XFRAC(26)=0.866667
XFRAC(27)=0.9 ;XFRAC(28)=0.933333
XFRAC(29)=0.966667 ;XFRAC(30)=1.
************************************************************
Group 4. Y-Direction Grid Spacing
NY = 30
YVLAST =10.
YFRAC(1)=0.033333 ;YFRAC(2)=0.066667
YFRAC(3)=0.1 ;YFRAC(4)=0.133333
YFRAC(5)=0.166667 ;YFRAC(6)=0.2
YFRAC(7)=0.233333 ;YFRAC(8)=0.266667
YFRAC(9)=0.3 ;YFRAC(10)=0.333333
YFRAC(11)=0.366667 ;YFRAC(12)=0.4
YFRAC(13)=0.433333 ;YFRAC(14)=0.466667
YFRAC(15)=0.5 ;YFRAC(16)=0.533333
YFRAC(17)=0.566667 ;YFRAC(18)=0.6
YFRAC(19)=0.633333 ;YFRAC(20)=0.666667
YFRAC(21)=0.7 ;YFRAC(22)=0.733333
YFRAC(23)=0.766667 ;YFRAC(24)=0.8
YFRAC(25)=0.833333 ;YFRAC(26)=0.866667
YFRAC(27)=0.9 ;YFRAC(28)=0.933333
YFRAC(29)=0.966667 ;YFRAC(30)=1.
************************************************************
Group 5. Z-Direction Grid Spacing
PARAB = F
NZ = 40
ZWLAST =35.
ZFRAC(1)=0.014286 ;ZFRAC(2)=0.028571
ZFRAC(3)=0.042857 ;ZFRAC(4)=0.057143
ZFRAC(5)=0.071429 ;ZFRAC(6)=0.085714
ZFRAC(7)=0.1 ;ZFRAC(8)=0.114286
ZFRAC(9)=0.128571 ;ZFRAC(10)=0.142857
ZFRAC(11)=0.157143 ;ZFRAC(12)=0.171429
ZFRAC(13)=0.185714 ;ZFRAC(14)=0.2
ZFRAC(15)=0.214286 ;ZFRAC(16)=0.228571
ZFRAC(17)=0.242857 ;ZFRAC(18)=0.257143
ZFRAC(19)=0.271429 ;ZFRAC(20)=0.285714
ZFRAC(21)=0.302603 ;ZFRAC(22)=0.325882
ZFRAC(23)=0.352393 ;ZFRAC(24)=0.381249
ZFRAC(25)=0.411983 ;ZFRAC(26)=0.444303
ZFRAC(27)=0.478004 ;ZFRAC(28)=0.512935
ZFRAC(29)=0.548976 ;ZFRAC(30)=0.586034
ZFRAC(31)=0.624032 ;ZFRAC(32)=0.662905
ZFRAC(33)=0.702597 ;ZFRAC(34)=0.74306
ZFRAC(35)=0.784253 ;ZFRAC(36)=0.826138
ZFRAC(37)=0.868684 ;ZFRAC(38)=0.91186
ZFRAC(39)=0.95564 ;ZFRAC(40)=1.
************************************************************
Group 6. Body-Fitted Coordinates
************************************************************
Group 7. Variables: STOREd,SOLVEd,NAMEd
ONEPHS = T
NAME(1)=P1 ;NAME(3)=U1
NAME(5)=V1 ;NAME(7)=W1
NAME(12)=KE ;NAME(13)=EP
NAME(147)=SECF ;NAME(148)=PRIF
NAME(149)=ENUT ;NAME(150)=MARK
* Y in SOLUTN argument list denotes:
* 1-stored 2-solved 3-whole-field
* 4-point-by-point 5-explicit 6-harmonic averaging
SOLUTN(P1,Y,Y,Y,N,N,Y)
SOLUTN(U1,Y,Y,Y,N,N,Y)
SOLUTN(V1,Y,Y,Y,N,N,Y)
SOLUTN(W1,Y,Y,Y,N,N,Y)
SOLUTN(KE,Y,Y,N,N,N,N)
SOLUTN(EP,Y,Y,N,N,N,N)
SOLUTN(SECF,Y,N,N,N,N,Y)
SOLUTN(PRIF,Y,N,N,N,N,Y)
SOLUTN(ENUT,Y,N,N,N,N,Y)
SOLUTN(MARK,Y,N,N,N,N,Y)
VIST = 149
************************************************************
Group 8. Terms & Devices
* Y in TERMS argument list denotes:
* 1-built-in source 2-convection 3-diffusion 4-transient
* 5-first phase variable 6-interphase transport
TERMS(P1,Y,Y,Y,N,Y,Y)
TERMS(U1,Y,Y,Y,Y,Y,Y)
TERMS(V1,Y,Y,Y,Y,Y,Y)
TERMS(W1,Y,Y,Y,Y,Y,Y)
TERMS(KE,N,Y,Y,Y,Y,N)
TERMS(EP,N,Y,Y,Y,Y,N)
DIFCUT =0.5 ;ZDIFAC =1.
GALA = F ;ADDDIF = F
NEWENT = T
ISOLX = -1 ;ISOLY = -1 ;ISOLZ = -1
************************************************************
Group 9. Properties used if PRPS is not
stored, and where PRPS = -1.0 if it is!
RHO1 =1. ;TMP1 =0. ;EL1 = GRND4
TSURR =0. ;TEMP0 =0. ;PRESS0 =0.
DVO1DT =0. ;DRH1DP =0.
EMISS =0. ;SCATT =0.
RADIA =0. ;RADIB =0.
EL1A =0. ;EL1B =0. ;EL1C =0.
ENUL =1.0E-02 ;ENUT = GRND3
ENUTA =0. ;ENUTB =0. ;ENUTC =0.
IENUTA = 0
PRNDTL(U1)=1. ;PRNDTL(V1)=1.
PRNDTL(W1)=1. ;PRNDTL(KE)=1.
PRNDTL(EP)=1.
PRT(U1)=1. ;PRT(V1)=1.
PRT(W1)=1. ;PRT(KE)=1.
PRT(EP)=1.314
CP1 =1. ;CP2 =1.
************************************************************
Group 10.Inter-Phase Transfer Processes
************************************************************
Group 11.Initial field variables (PHIs)
FIINIT(P1)=1.0E-10 ;FIINIT(U1)=1.0E-10
FIINIT(V1)=1.0E-10 ;FIINIT(W1)=1.0E-10
FIINIT(KE)=1.0E-02 ;FIINIT(EP)=1.0E-02
FIINIT(SECF)=1.0E-10 ;FIINIT(PRIF)=1.0E-10
FIINIT(ENUT)=1.0E-02 ;FIINIT(MARK)=0.
PATCH(.PATCH1 ,INIVAL,0. ,0. ,0. ,1. ,0. ,1. ,1. ,1. )
INIADD = F
FSWEEP = 1
NAMFI =CHAM
************************************************************
Group 12. Patchwise adjustment of terms
Patches for this group are printed with those
for Group 13.
Their names begin either with GP12 or &
************************************************************
Group 13. Boundary & Special Sources
PATCH(OUT ,HIGH , 1, 10, 1, 10, 10, 10, 1, 1)
COVAL(OUT ,P1 ,1. ,0. )
PATCH(KESOURCE,PHASEM, 0, 0, 0, 0, 0, 0, 1, 1)
COVAL(KESOURCE,KE , GRND4 , GRND4 )
COVAL(KESOURCE,EP , GRND4 , GRND4 )
PATCH(INLET1 ,WEST , 1, 1, 1, 30, 1, 40, 1, 1)
COVAL(INLET1 ,P1 ,In-Form:source - see Grp 19)
COVAL(INLET1 ,U1 ,In-Form:source - see Grp 19)
PATCH(INLET2 ,WEST , 1, 1, 1, 30, 1, 40, 1, 1)
COVAL(INLET2 ,P1 ,In-Form:source - see Grp 19)
COVAL(INLET2 ,U1 ,In-Form:source - see Grp 19)
COVAL(INLET2 ,V1 ,In-Form:source - see Grp 19)
COVAL(INLET2 ,W1 ,In-Form:source - see Grp 19)
XCYCLE = F
EGWF = T
WALLCO = GRND2
************************************************************
Group 14. Downstream Pressure For PARAB
************************************************************
Group 15. Terminate Sweeps
LSWEEP = 200 ;ISWC1 = 1
LITHYD = 1 ;LITFLX = 1 ;LITC = 1 ;ITHC1 = 1
SELREF = T
RESFAC =1.0E-02
************************************************************
Group 16. Terminate Iterations
LITER(P1)=20 ;LITER(U1)=10
LITER(V1)=10 ;LITER(W1)=10
LITER(KE)=20 ;LITER(EP)=20
ENDIT(P1)=1.0E-03 ;ENDIT(U1)=1.0E-03
ENDIT(V1)=1.0E-03 ;ENDIT(W1)=1.0E-03
ENDIT(KE)=1.0E-03 ;ENDIT(EP)=1.0E-03
************************************************************
Group 17. Relaxation
RELAX(P1,LINRLX,1.)
RELAX(U1,FALSDT,1.)
RELAX(V1,FALSDT,1.)
RELAX(W1,FALSDT,1.)
RELAX(KE,LINRLX,0.5)
RELAX(EP,LINRLX,0.5)
RELAX(SECF,LINRLX,1.)
RELAX(PRIF,LINRLX,1.)
RELAX(ENUT,LINRLX,1.)
RELAX(MARK,LINRLX,1.)
KELIN = 0
OVRRLX =0.
EXPERT = F ;NNORSL = F
************************************************************
Group 18. Limits
VARMAX(P1)=1.0E+10 ;VARMIN(P1)=-1.0E+10
VARMAX(U1)=0.3 ;VARMIN(U1)=-1.0E+11
VARMAX(V1)=0.3 ;VARMIN(V1)=-1.0E+11
VARMAX(W1)=0.3 ;VARMIN(W1)=-1.0E+11
VARMAX(KE)=1.0E+10 ;VARMIN(KE)=1.0E-03
VARMAX(EP)=1.0E+10 ;VARMIN(EP)=1.0E-03
VARMAX(SECF)=1.0E+10 ;VARMIN(SECF)=-1.0E+10
VARMAX(PRIF)=1.0E+10 ;VARMIN(PRIF)=-1.0E+10
VARMAX(ENUT)=1.0E+10 ;VARMIN(ENUT)=-1.0E+10
VARMAX(MARK)=1.0E+10 ;VARMIN(MARK)=-1.0E+10
************************************************************
Group 19. Data transmitted to GROUND
GENK = T
PARSOL = F
CONWIZ = T
ISG50 = 1
ISG52 = 1
ISG62 = 1
SPEDAT(SET,INFOB,*!.PATCH1,C,=SPHERE(0&5.&5.25&4.&0&0&0)-SPHERE(0$)
SPEDAT(SET,INFOB,*!.PATCH1,C,&5.&5.25&2.&0&0&0)!INFOB_2)
SPEDAT(SET,INFOB,*!.PATCH1,C,=SPHERE(0&5.&5.25&2.&0&0&0)!INFOB_1)
SPEDAT(SET,MAKE,PRIMF,C,=1.)
SPEDAT(SET,STORED,PRIMF!.PATCH1,C,=SUM(AEAST/(3.14159*2.^2))!INFO$)
SPEDAT(SET,STORED,PRIMF!.PATCH1,C,B_1!IF(ISWEEP.LE.2)!ZSLFIN)
SPEDAT(SET,STORED,PRIF,C,=PRIMF!IF(ISWEEP.LE.2)!ZSLFIN)
SPEDAT(SET,LONGNAME,PRIF,C,Primary_inlet_mass_flux_coefficient)
SPEDAT(SET,MAKE,SECNF,C,=1.)
SPEDAT(SET,STORED,SECNF!.PATCH1,C,=SUM(AEAST/(3.14159*(4.^2-2.^2)$)
SPEDAT(SET,STORED,SECNF!.PATCH1,C,))!INFOB_2!IF(ISWEEP.LE.2)!ZSLF$)
SPEDAT(SET,STORED,SECNF!.PATCH1,C,IN)
SPEDAT(SET,STORED,SECF,C,=SECNF!IF(ISWEEP.LE.2)!ZSLFIN)
SPEDAT(SET,LONGNAME,SECF,C,Secondary_inlet_mass_flux_coefficient)
SPEDAT(SET,SOURCE,R1!INLET1,C,=1.*5./PRIMF!INFOB_1)
SPEDAT(SET,SOURCE,U1!INLET1,C,=1.*5.*5./PRIMF!INFOB_1)
SPEDAT(SET,SOURCE,R1!INLET2,C,=1.*10./SECNF!INFOB_2)
SPEDAT(SET,SOURCE,U1!INLET2,C,=1.*10.*10./SECNF!INFOB_2)
SPEDAT(SET,SOURCE,V1!INLET2,C,=1.*10./SECNF*25.*(ZG-5.25)/SQRT((Y$)
SPEDAT(SET,SOURCE,V1!INLET2,C,V-5.)^2+(ZG-5.25)^2)!INFOB_2)
SPEDAT(SET,SOURCE,W1!INLET2,C,=1.*10./SECNF*(-25.)*(YG-5.)/SQRT(($)
SPEDAT(SET,SOURCE,W1!INLET2,C,YG-5.)^2+(ZW-5.25)^2)!INFOB_2)
SPEDAT(SET,STORED,MARK,C,=1!INFOB_1!IF(ISWEEP.LE.2)!ZSLFIN)
SPEDAT(SET,STORED,MARK,C,=2!INFOB_2!IF(ISWEEP.LE.2)!ZSLFIN)
SPEDAT(SET,MAXINC,KE,R,10.)
SPEDAT(SET,MAXINC,EP,R,10.)
SPEDAT(SET,GXMONI,PLOTALL,L,T)
************************************************************
Group 20. Preliminary Printout
DISTIL = T ;NULLPR = F
NDST = 0
DSTTOL =1.0E-02
EX(P1)=7.215 ;EX(U1)=2.095
EX(V1)=1.708 ;EX(W1)=4.871
EX(KE)=0. ;EX(EP)=0.
EX(SECF)=0. ;EX(PRIF)=0.
EX(ENUT)=0. ;EX(MARK)=0.028
************************************************************
Group 21. Print-out of Variables
INIFLD = F ;SUBWGR = F
* Y in OUTPUT argument list denotes:
* 1-field 2-correction-eq. monitor 3-selective dumping
* 4-whole-field residual 5-spot-value table 6-residual table
OUTPUT(P1,Y,N,Y,Y,Y,Y)
OUTPUT(U1,Y,N,Y,Y,Y,Y)
OUTPUT(V1,Y,N,Y,Y,Y,Y)
OUTPUT(W1,Y,N,Y,Y,Y,Y)
OUTPUT(KE,Y,N,Y,Y,Y,Y)
OUTPUT(EP,Y,N,Y,Y,Y,Y)
OUTPUT(SECF,Y,N,Y,N,N,N)
OUTPUT(PRIF,Y,N,Y,N,N,N)
OUTPUT(ENUT,Y,N,Y,N,N,N)
OUTPUT(MARK,Y,N,Y,N,N,N)
************************************************************
Group 22. Monitor Print-Out
IXMON = 5 ;IYMON = 9 ;IZMON = 1
NPRMON = 100000 ;NPRMNT = 1 ;TSTSWP = -1
UWATCH = T ;USTEER = T
HIGHLO = F
************************************************************
Group 23.Field Print-Out & Plot Control
NPRINT = 100000 ;NUMCLS = 5
NXPRIN = 1 ;IXPRF = 1 ;IXPRL = 10000
NYPRIN = 1 ;IYPRF = 1 ;IYPRL = 10000
NZPRIN = 1 ;IZPRF = 1 ;IZPRL = 10000
XZPR = F ;YZPR = F
IPLTF = 1 ;IPLTL = -1 ;NPLT = -1
ISWPRF = 1 ;ISWPRL = 100000
ITABL = 3 ;IPROF = 1
ABSIZ =0.5 ;ORSIZ =0.4
NTZPRF = 1 ;NCOLPF = 50
ICHR = 2 ;NCOLCO = 45 ;NROWCO = 20
No PATCHes yet used for this Group
************************************************************
Group 24. Dumps For Restarts
SAVE = T ;NOWIPE = F
NSAVE =CHAM
STOP