PHOTON USE
AUTOPLOT
file
phi 5
da 1
u1
screen
msg gas velocity
pl 1
msg press to continue
pause
cl
da 1
u2
screen
msg particle velocity
pl 1
msg press to continue
pause
cl
da 1
r1
screen
msg gas volume fraction
pl 1
msg press to continue
pause
cl
da 1
c1
screen
msg concentration of contaminant
pl 1
msg press to continue
pause
cl
da 1
p1
screen
msg pressure
pl 1
msg press e to END
enduse
GROUP 1. Run title and other preliminaries
TEXT(2 PHASE DEMO - DP = 1.0E-4 : W577
TITLE
****************************************************************
This Q1 demonstrates the use of the additional features
provided in GXFIP and GXCINT. These are:
GXFIP: This provides all the normal CFIPS formulae, as well
as a drag law for spherical particles. This is
activated by CFIPS = GRND7. CFIPA is then the minimum
slip velocity, and CFIPB the particle diameter. If
the shadow volume fraction, RS, is SOLVEd, CFIPB is the
nominal diameter.
GXCINT:This provides two heat/concentration transfer coefficient
formulations based on local Nusselt Numbers. These are
activated by CINT(phi) = GRND7/GRND8. The coding checks
for PHINT(h1)= Cp1/Cp2;PHINT(h2)=default, and multiplies
the transfer coefficients by the appropriate specific
heat ratios.
****************************************************************
DISPLAY
The case considered represents a cool gas (phase 1),
carrying a stream of faster, hotter particles. The gas
also has a concentration of a contaminant, C1, which
diffuses into the particles, C2. The densities and
specific heats of the phases are different. The heat
and concentration transfer coefficients are based on
local Nusselt Numbers. Heat transfer is driven by
interphase temperature difference, hence PHINT(h1) is
set to the ratio of specific heats, and PHINT(h2) is
left at the default. The drag law for spheres is used.
ENDDIS
****************************************************************
The main parameters specifying the problem are:
uin1,uin2 - phase 1 and phase 2 inlet velocity
r1in,r2in - phase 1 and phase 2 inlet volume fraction
t1in,t2in - phase 1 and phase 2 inlet temperature
c1in,c2in - phase 1 and phase 2 inlet concentration
rho1,rho2 - phase 1 and phase 2 density
cfipb - particle diameter
tmp2a,tmp2b - reciprocal of phase 1 and phase 2 specific heat
****************************************************************
REAL(UIN1,UIN2,R1IN,R2IN,H1IN,H2IN,T1IN,T2IN,C1IN,C2IN)
GROUP 3. X-direction grid specification
GRDPWR(X,10,1,1)
GROUP 7. Variables stored, solved & named
ONEPHS=F;SOLVE(P1,U1,U2,R1,R2,C1,C2,H1,H2)
STORE(CFIP,TMP1,TMP2);STORE(NUSS,REYN,VREL,CD,APRJ)
GROUP 9. Properties of the medium (or media)
RHO1=1;RHO2=2000
TMP1=LINH;TMP1A=273;TMP1B=1/1000;CP1=1000
TMP2=LINH;TMP2A=273;TMP2B=1/2000;CP2=2000
GROUP 10. Inter-phase-transfer processes and properties
CFIPS=GRND7;CFIPA=1E-6;STORE(SIZE)
Select the particle size for each value of CASENO
CFIPB=1E-4
CINT(C1)=GRND7;CINT(C2)=GRND7
CINT(H1)=GRND7;CINT(H2)=GRND7
PHINT(H1)=TMP2B/TMP1B
GROUP 13. Boundary conditions and special sources
UIN1=10;UIN2=20;R1IN=0.9;R2IN=1-R1IN;T1IN=300;T2IN=500
C1IN=1;C2IN=0
H1IN=(T1IN-TMP1A)/TMP1B;H2IN=(T2IN-TMP2A)/TMP2B
FIINIT(R1)=R1IN;FIINIT(R2)=R2IN;FIINIT(H1)=H1IN;FIINIT(H2)=H2IN
FIINIT(C1)=C1IN;FIINIT(C2)=C2IN
INLET(IN,WEST,1,1,1,1,1,1,1,1)
VALUE(IN,P1,RHO1*UIN1*R1IN);VALUE(IN,U1,UIN1)
VALUE(IN,C1,C1IN);VALUE(IN,H1,H1IN)
VALUE(IN,P2,RHO2*UIN2*R2IN);VALUE(IN,U2,UIN2)
VALUE(IN,C2,C2IN);VALUE(IN,H2,H2IN)
OUTLET(OUT,EAST,NX,NX,1,1,1,1,1,1)
COVAL(OUT,P1,RHO1*1E6,0);COVAL(OUT,P2,RHO2*1E6,0)
GROUP 15. Termination of sweeps
LSWEEP=50
GROUP 17. Under-relaxation devices
RELAX(R1,LINRLX,0.8);RELAX(R2,LINRLX,0.8)
GROUP 21. Print-out of variables
NXPRIN=1
GROUP 22. Spot-value print-out
IXMON=7;TSTSWP=-1
GROUP 24. Dumps for restarts
NOWIPE=F