talk=t;run(1,1)
PHOTON USE
p
GR OU X 21 Y 1 3 Z 1 1
GR OU X 1 Y 1 3 Z 1 1
GR OU Y 4 X 1 20 Z 1 1
GR OU Y 1 X 1 20 Z 1 1
GR OU X 6 Y 4 10 Z 1 1
GR OU X 1 Y 4 10 Z 1 1
GR OU Y 11 X 1 5 Z 1 1
GR OU Y 4 X 1 5 Z 1 1
GR OU X 4 Y 11 14 Z 1 1
GR OU X 1 Y 11 14 Z 1 1
GR OU Y 15 X 1 3 Z 1 1
GR OU Y 11 X 1 3 Z 1 1
GR OU X 6 Y 15 22 Z 1 1
GR OU X 1 Y 15 22 Z 1 1
GR OU Y 23 X 1 5 Z 1 1
GR OU Y 15 X 1 5 Z 1 1
GR OU X 21 Y 15 22 Z 1 1
GR OU X 14 Y 15 22 Z 1 1
GR OU Y 23 X 14 20 Z 1 1
GR OU Y 15 X 14 20 Z 1 1
GR OU X 21 Y 11 14 Z 1 1
GR OU X 16 Y 11 14 Z 1 1
GR OU Y 15 X 16 20 Z 1 1
GR OU Y 11 X 16 20 Z 1 1
GR OU X 21 Y 9 10 Z 1 1
GR OU X 14 Y 9 10 Z 1 1
GR OU Y 11 X 14 20 Z 1 1
GR OU Y 9 X 14 20 Z 1 1
GR OU X 16 Y 11 14 Z 1 1 COL 14
GR OU X 4 Y 11 14 Z 1 1 COL 14
GR OU Y 15 X 4 15 Z 1 1 COL 14
GR OU Y 11 X 4 15 Z 1 1 COL 14
MSG COOLER GEOMETRY
msg Press Enter to continue
PAUSE;red
VEC Z 1 Y 1 28 SH
MSG Velocity vectors
msg Press Enter to continue
pause;vec off;red
con tgas z 1 Y 1 28 fil;0.01
msg Temperature contours
msg Press Enter to continue
pause;con off;red
con yn2 z 1 Y 1 28 fil;0.01
msg Nitrogen
msg Press Enter to continue
pause;con off;red
con yo2 z 1 Y 1 28 fil;0.01
msg Oxygen
msg Press Enter to continue
pause;con off;red
con yh2 z 1 Y 1 28 fil;0.01
msg Hydrogen
msg Press Enter to continue
pause;con off;red
con yco z 1 Y 1 28 fil;0.01
msg CO
msg Press Enter to continue
pause;con off;red
con yco2 z 1 Y 1 28 fil;0.01
msg CO2
msg Press Enter to continue
pause;con off;red
con yh2o z 1 Y 1 28 fil;0.01
msg H2O
msg Press Enter to end
ENDUSE
************************************************************
* GROUP 1. Run identifiers and other preliminaries.
TEXT(Environmental level coke combustion simulation
DISPLAY
Environmental level coke combustion simulation
The packed bed of heat generating materials is cooled by air
flow generated by buyoancy. The pressure drop across a packed
bed is obtained from Ergun equation. The material tempeartures
are also calculated.
ENDDIS
==================
REAL(TENV,PORI,QDVOL,VVOL); TENV=-40.; PORI=0.8
VVOL=5.2*4.62*2.345
QDVOL=20.E6/VVOL*(1-PORI)
REAL(DIAM,LENGTH);DIAM=0.02
LENGTH=DIAM*PORI/(1.-PORI)
************************************************************
* GROUP 2. Time-dependence and related parameters.
************************************************************
* GROUP 3. x-direction grid specification.
NX = 25
XULAST = 14.4
XFRAC ( 1) = 4.630E-02 ;XFRAC ( 2) = 9.259E-02
XFRAC ( 3) = 1.389E-01 ;XFRAC ( 4) = 1.649E-01
XFRAC ( 5) = 1.910E-01 ;XFRAC ( 6) = 2.179E-01
XFRAC ( 7) = 2.448E-01 ;XFRAC ( 8) = 2.717E-01
XFRAC ( 9) = 2.986E-01 ;XFRAC ( 10) = 3.255E-01
XFRAC ( 11) = 3.524E-01 ;XFRAC ( 12) = 3.793E-01
XFRAC ( 13) = 4.063E-01 ;XFRAC ( 14) = 4.323E-01
XFRAC ( 15) = 4.583E-01 ;XFRAC ( 16) = 4.972E-01
XFRAC ( 17) = 5.361E-01 ;XFRAC ( 18) = 5.750E-01
XFRAC ( 19) = 6.139E-01 ;XFRAC ( 20) = 6.528E-01
XFRAC ( 21) = 6.838E-01 ;XFRAC ( 22) = 7.406E-01
XFRAC ( 23) = 8.142E-01 ;XFRAC ( 24) = 9.012E-01
XFRAC ( 25) = 1.000E+00
************************************************************
* GROUP 4. y-direction grid specification.
NY = 30
YVLAST = 27.0
YFRAC ( 1) = 6.173E-02 ;YFRAC ( 2) = 1.235E-01
YFRAC ( 3) = 1.852E-01 ;YFRAC ( 4) = 2.022E-01
YFRAC ( 5) = 2.193E-01 ;YFRAC ( 6) = 2.363E-01
YFRAC ( 7) = 2.533E-01 ;YFRAC ( 8) = 2.704E-01
YFRAC ( 9) = 2.778E-01 ;YFRAC ( 10) = 2.852E-01
YFRAC ( 11) = 3.065E-01 ;YFRAC ( 12) = 3.278E-01
YFRAC ( 13) = 3.491E-01 ;YFRAC ( 14) = 3.704E-01
YFRAC ( 15) = 4.028E-01 ;YFRAC ( 16) = 4.352E-01
YFRAC ( 17) = 4.676E-01 ;YFRAC ( 18) = 5.000E-01
YFRAC ( 19) = 5.324E-01 ;YFRAC ( 20) = 5.648E-01
YFRAC ( 21) = 5.972E-01 ;YFRAC ( 22) = 6.296E-01
YFRAC ( 23) = 6.759E-01 ;YFRAC ( 24) = 7.222E-01
YFRAC ( 25) = 7.685E-01 ;YFRAC ( 26) = 8.148E-01
YFRAC ( 27) = 8.611E-01 ;YFRAC ( 28) = 9.074E-01
YFRAC ( 29) = 9.537E-01 ;YFRAC ( 30) = 1.000E+00
* GROUP 7. Variables (including porosities) named,
* stored & solved.
SOLVE(P1,U1,V1,H1,METL); SOLUTN(P1,Y,Y,Y,N,N,N)
STORE(TMP1)
STORE(ENUT,EPOR,NPOR,VPOR)
************************************************************
* GROUP 8. Terms (in differential equations) and devices.
TERMS(METL,N,N,N,N,Y,N)
************************************************************
* GROUP 9. Properties of the medium (or media).
PRESS0=1.0000E+05
* CP1 = Specific heat (J/kg K)
REAL(CAP);CAP=996.
* TREF1 = Reference temperature (K)
REAL(TREF1);TREF1=273.
* HREF1 = Reference enthalpy (J/kg)
REAL(HREF1);HREF1=CAP*(TREF1+TENV)
* VEXP1 = Volume expansivity coefficient (1/K)
REAL(VEXP1);VEXP1=3.6720E-03
* Density (kg/m^3)
RHO1=1.2200E+00
* Set TMP1 = TREF + H1/CP1
TMP1=GRND2;TMP1A=0.0;CP1=CAP
* Prandtl number of the fluid/media
PRNDTL(H1)=7.3600E-01
* Laminar kinematic viscosity (m^2/s)
ENUL=1.4650E-05
TURMOD(KEMODL)
* Turbulent Prandtl number of the fluid/media
PRT(H1)=1
************************************************************
* GROUP 10. Interphase-transfer processes and properties.
************************************************************
* GROUP 11. Initialization of fields of variables,
* porosities, etc.
CONPOR(0,CELL,1,-20,1,-3,1,1)
CONPOR(0,CELL,1,-5,4,10,1,1)
CONPOR(0,CELL,1,-3,11,14,1,1)
CONPOR(0,CELL,1,-5,15,-22,1,1)
CONPOR(0,CELL,-14,-20,15,-22,1,1)
CONPOR(0,CELL,-16,-20,11,14,1,1)
CONPOR(0,CELL,-14,-20,-9,10,1,1)
CONPOR(PORI,VOLUME,4,15,11,14,1,1)
CONPOR(PORI,EAST,4,15,11,14,1,1)
CONPOR(PORI,NORTH,4,15,11,14,1,1)
FIINIT(U1)=0.0
FIINIT(V1)=0.1
FIINIT(H1)=HREF1
FIINIT(KE)=5.0E-02
FIINIT(EP)=2.4573E-01
*
************************************************************
* GROUP 12. Convection and diffusion adjustments
************************************************************
* GROUP 13. Boundary conditions and special sources
OUTLET(OUTR,EAST,NX,NX,1,NY,1,NZ,1,1)
VALUE(OUTR,U1,SAME)
VALUE(OUTR,V1,SAME)
VALUE(OUTR,P1,0.)
VALUE(OUTR,H1,CAP*(TREF1+TENV))
VALUE(OUTR,KE,SAME)
VALUE(OUTR,EP,SAME)
OUTLET(OUTL,WEST,1,1,23,30,1,NZ,1,1)
VALUE(OUTL,U1,SAME)
VALUE(OUTL,V1,SAME)
VALUE(OUTL,P1,0.)
VALUE(OUTL,H1,CAP*(TREF1+TENV))
VALUE(OUTL,KE,SAME)
VALUE(OUTL,EP,SAME)
* OUTLET boundary condition, name OUTUP
OUTLET(OUTUP,NORTH,1,NX,NY,NY,1,NZ,1,1)
VALUE(OUTUP,U1,SAME)
VALUE(OUTUP,V1,SAME)
VALUE(OUTUP,P1,0.)
VALUE(OUTUP,H1,CAP*(TREF1+TENV))
VALUE(OUTUP,KE,SAME)
VALUE(OUTUP,EP,SAME)
* HEAT-SOURCE boundary condition, name HOTHEAT
PATCH(HEAT,VOLUME,4,15,11,14,1,1,1,1)
COVAL(HEAT,H1,FIXFLU,QDVOL)
COVAL(HEAT,METL,FIXFLU,QDVOL)
** Ergun's resitance law
* Linear resistance term
PATCH(ERLIN,PHASEM,4,15,11,14,1,1,1,1)
COVAL(ERLIN,U1,0.1*ENUL/LENGTH**2,0.0)
COVAL(ERLIN,V1,0.1*ENUL/LENGTH**2,0.0)
* Quadratic resistance term
PATCH(ERQUA,PHASEM,4,15,11,14,1,1,1,1)
CO=RG(2)*ABS(U1)
COVAL(ERQUA,U1,GRND,0.0)
CO=RG(2)*ABS(V1)
COVAL(ERQUA,V1,GRND,0.0)
* Metal temperature
PATCH(METEMP,VOLUME,4,15,11,14,1,1,1,1)
VAL=TMP1
COVAL(METEMP,METL,100.,GRND)
* GRAVITY boundary condition, name BUOYANCY
PATCH(BUOYANCY,PHASEM,1,NX,1,NY,1,1,1,1)
COVAL(BUOYANCY,U1,FIXFLU,GRND3)
COVAL(BUOYANCY,V1,FIXFLU,GRND3)
* Set gravity resolutes
BUOYA=0.;BUOYB=-9.8100E+00;BUOYC=0.
* Set contants for Boussinesq approximation
BUOYD=VEXP1/CAP;BUOYE=HREF1
* GROUP 15. Termination criteria for sweeps and
LSWEEP=300
* GROUP 17. Under-relaxation and related devices.
REAL(MAXV,MINL,RELX)
MAXV=4.
MINL=5.7600E-01
RELX=1
RELAX(P1,LINRLX,0.8)
RELAX(U1,FALSDT,MINL/MAXV*RELX)
RELAX(V1,FALSDT,MINL/MAXV*RELX)
RELAX(H1,FALSDT,MINL/MAXV*1.E3)
RELAX(KE,FALSDT,MINL/MAXV*RELX/10)
RELAX(EP,FALSDT,MINL/MAXV*RELX/10)
* GROUP 19. Data communicated by SATELLITE to GROUND
NAMSAT=MOSG
RG(1)=150.*ENUL/LENGTH**2
RG(2)=0.0175/LENGTH
* GROUP 22. Location of spot-value & frequency of
* residual printout.
IXMON=14; IYMON=13
tstswp=-1
Coal-combustion model.
Reactions: C (s) + 0.5 O2 > CO
CO + 0.5 O2 > CO2
C(s) + CO2 > 2CO
C(s) + H2O > CO + H2
H2 + 0.5 O2 > H2O
The numerical values which appear below are:-
* the mass fractions of O2 and N2 in air, namely: 0.232 and 0.
* the molecular weights of O2, N2, CO2, CO, H2O, H2, -
32.0, 28.0, 44.0, 28.0, 18.0 and 2.0
* the Universal Gas Constant, GASCON: 8.314
* the heat of reaction for C + O2 -> CO2, HCCO2: 3.279
* the heat of reaction for C + 0.5*O2 -> CO , HCCO : 9.208
* the heat of reaction for H2 + 0.5*O2 -> H2O, HHH2O: 1.209
* the specific heat at constant pressure, CP : 1.100
all in SI un
CINCL, the mass fraction of C in the coal;
HINCL, the mass fraction of H in the fuel;
NINCL, the mass fraction of N in the fuel;
AINCL, the mass fraction of ash in the fuel.
REAL(HINCL,CINCL,NINCL,AINCL)
REAL(AIRO2,AIRN2)
REAL(MN2,MC,MO2,MH2,MCO,MCO2,MH2O)
HINCL=0.05
CINCL=0.95
NINCL=0.0
AINCL=1.-CINCL-HINCL-NINCL
AIRO2=0.232
AIRN2=0.768
MN2=28.; MC=12.; MO2=32.; MH2=2.; MCO=28.; MCO2=44.; MH2O=18.
REAL(HCCO2,HCCO,HHH2O,HCHX,HCOCO2)
HCCO2 =3.279E7
HCCO = 9.208E6
HHH2O = 1.209E6
REAL(FS,BURNRATE, WIN)
** FS is the mass of fuel per unit mass of air/fuel mixture
to convert all carbon and oxygen to carbon monoxide.
FS=0.232/(0.232 + CINCL*16.0/12.0)
** The heat of combustion per unit mass of co is hcco2 minus hcco
the mass of c per unit mass of co, ie 12/28
HCOCO2=(12.0/28.0)*(HCCO2-HCCO)
** The heat of coal combustion per unit mass of carbon
HCHX=(CINCL*HCCO2+HINCL*HHH2O)*(HINCL*MH2+CINCL*MC+NINCL*MN2)/MC
** The rate of burning
BURNRATE=3.
** FCL - carbon element mass fraction;
** The specific heat at constant pressure, CP =1.100E3
H = CP*T + HCHX*YCHX + HCOCO2*YCO * HHH2*YH2
SOLVE(H11,FCL)
REAL(CP,TFUEL,HGIN,TGIN)
TGIN = TENV+273.
HGIN = CAP*TGIN
STORE(HSUB,TGAS,YN2,YH2,YO2,YCO,YCO2,YH2O,RMIX)
STORE(FLIM,FRAC,GO,GC,GH,GOFU,GOPA)
SOLUTN(FCL,Y,Y,Y,P,P,P)
SOLUTN(H11 ,Y,Y,Y,P,P,P)
GROUP 8. Terms (in differential equations) & devices
TERMS(FCL,N,Y,N,P,P,P)
TERMS(H11,N,Y,N,P,P,P)
GROUP 9. Properties of the medium (or media)
REAL(RHOIN1,WAIR)
PRESS0=1.e5
WAIR=29.
RHOIN1=PRESS0*WAIR/(8314.*TGIN)
GROUP 11. Initialization of variable or porosity fields
FIINIT(FCL)=1.
GROUP 13. Boundary conditions and special sources
** Inlet Boundaries
VALUE(OUTL,FCL, 0.0)
VALUE(OUTL,H11, HGIN)
VALUE(OUTR,FCL , 0.0)
VALUE(OUTR,H11, HGIN)
VALUE(OUTUP,FCL, 0.0)
VALUE(OUTUP,H11, HGIN)
Carbon mass transfer related sources:
------------------------------------
PATCH(CARGAS,VOLUME,1,NX,1,NY,1,NZ,1,1)
(1) Transfer of mass leading to increase of gas flow rate:
- VPOR is volume fraction of lump coal
VAL=:BURNRATE:*(1.-VPOR)*(:FS:-FCL)
COVAL(CARGAS,P1,FIXFLU,GRND)
(2) Transfer of carbon leading to increase of mixture
fraction at the same rate:
- CO=1. signifies that mass tarnsfer brings in
material which is 100% carbon
COVAL(CARGAS,FCL,ONLYMS,1.)
(3) Transfer of enthalpy and heat leading to increase of
gas enthalpy at the same rate:
- Interphase gas temperature is assumed as Tgas.
- HSUB = HCOCO2*YCO * HH2*YH2
VAL=:CP:*TGAS+:HCHX:+HSUB
COVAL(CARGAS,H11,ONLYMS,GRND)
GROUP 15. Termination of sweeps
LSWEEP=350
GROUP 16. Termination of iterations
LITHYD=10
VARMAX(FCL)=FS;VARMIN(FCL)=0.0
VARMIN(TGAS)=TGIN
GROUP 17. Under-relaxation devices
RELAX(FCL,FALSDT,0.25)
RELAX(H11,FALSDT,0.25)
GROUP 23. Field print-out and plot control
NPLT=1;NYPRIN=1;NZPRIN=1
NYPRIN=1;IYPRF=1;IYPRL=30
TSTSWP=-1
Coal oxidation is presumed to proceed in two stages, viz:
(1) to create CO2 and H2O, and then
(2) to create CO and H2, as more fuel is added.
The gas composition diagram, taking account of the elemental
mass fractions of O, C and H, has got three regions:
(1) Region 1 containing O2, CO2 & H2O
(2) Region 2 containing CO2, H2O, H2 & CO
(3) Region 3 containing H2 & CO.
The values of oxygen fraction GO at which the formulae exbibit
discontinuities of slope are called:-
GOPA, where the oxygen has consumed part of the fuel, so as
create CO and H2; and
GOFU, where the products of combustion are CO2 and H2O.
** Cell-wise composition parameters
--------------------------------
FLIM=:AIRO2:/(:AIRO2:+:CINCL:*:MO2:/:MC:+$
:HINCL:*:MO2:/(2*:MH2:))
GO=:AIRO2:*(1-FCL)
GC=:CINCL:*FCL
GH=:HINCL:*FCL
GOPA=GC*:MO2:/(2*:MC:)/(1-GO+GC*:MO2:/(2*:MC:)+TINY)
GOFU=(GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:)/$
(1.-GO+GH*:MO2:/(2*:MH2:)+GC*:MO2:/:MC:+TINY)
FRAC=(GO-GOPA)/(GOFU-GOPA+TINY)
** For all regions
---------------
YN2=:NINCL:*FCL+:AIRN2:*(1.-FCL)
** Region 1
--------
YH2O=:HINCL:*FCL*:MH2O:/:MH2:
IF(FCL.LE.FLIM)
YCO2=:CINCL:*FCL*:MCO2:/:MC:
IF(FCL.LE.FLIM)
YO2 =:AIRO2:*(1-FCL)-:CINCL:*FCL*:MO2:/:MC:-$
:HINCL:*FCL*:MO2:/(2.*:MH2:)
IF(FCL.LE.FLIM)
YCO=0.0
IF(FCL.LE.FLIM)
YH2=0.0
IF(FCL.LE.FLIM)
HSUB=0.0
IF(FCL.LE.FLIM)
RMIX=8314.3*(YO2/32.+YH2O/18.+YCO2/44.+YN2/28.)
IF(FCL.LE.FLIM)
** Region 2
--------
YH2O=:HINCL:*FCL*:MH2O:/:MH2:*FRAC*(1-GOFU)/(1-GO+TINY)
IF(FCL.GT.FLIM.AND.FRAC.GE.0.)
YCO2=:CINCL:*FCL*:MCO2:/:MC:*FRAC*(1-GOFU)/(1-GO+TINY)
IF(FCL.GT.FLIM.AND.FRAC.GE.0.)
YO2=0.0
IF(FCL.GT.FLIM.AND.FRAC.GE.0.)
YCO=:CINCL:*FCL*:MCO:/:MC:*(1-FRAC)*$
(1-GOPA)/(1-GO+TINY)
IF(FCL.GT.FLIM.AND.FRAC.GE.0.)
YH2=:HINCL:*FCL*(1-FRAC)*(1-GOPA)/(1-GO+TINY)
IF(FCL.GT.FLIM.AND.FRAC.GE.0.)
HSUB=YCO*:HCOCO2:+YH2*:HHH2O:
IF(FCL.GT.FLIM.AND.FRAC.GE.0.)
RMIX=8314.3*(YH2O/18.+YCO/28.+YCO2/44.+YH2/2.+YN2/28.)
IF(FCL.GT.FLIM.AND.FRAC.GE.0.)
** Region 3
--------
YH2O=0.0
IF(FCL.GT.FLIM.AND.FRAC.LT.0.)
YCO2=0.0
IF(FCL.GT.FLIM.AND.FRAC.LT.0.)
YO2=0.0
IF(FCL.GT.FLIM.AND.FRAC.LT.0.)
YCO=:AIRO2:*(1-FCL)*2*:MCO:/:MO2:
IF(FCL.GT.FLIM.AND.FRAC.LT.0.)
YH2=:HINCL:*FCL
IF(FCL.GT.FLIM.AND.FRAC.LT.0.)
HSUB=YCO*:HCOCO2:+YH2*:HHH2O:
IF(FCL.GT.FLIM.AND.FRAC.LT.0.)
RMIX=8314.3*(YCO/28.+YH2/2.+YN2/28.)
IF(FCL.GT.FLIM.AND.FRAC.LT.0.)
** Calculation of absolute gas temperature
--------------------------------------
TGAS=AMAX1(:TGIN:,(H11-HSUB)/:CAP:)
store(ysum)
YSUM=YN2+YO2+YCO+YCO2+YH2O+YH2
store(DEN1)
DEN1=1.e5/(RMIX*TGAS+tiny)
FIINIT(YO2)=0.232;FIINIT(YN2)=0.768
MAXV=4.
MINL=5.7600E-01
RELX=1
RELAX(P1,LINRLX,0.8)
RELAX(U1,FALSDT,MINL/MAXV*RELX)
RELAX(V1,FALSDT,MINL/MAXV*RELX)
RELAX(H1,FALSDT,MINL/MAXV*1.E3)
RELAX(KE,FALSDT,MINL/MAXV*RELX/10)
RELAX(EP,FALSDT,MINL/MAXV*RELX/10)
burnrate=1.
dmpstk=t
LIBREF=262
STOP