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ABSTRACT 

Internal waves are ubiquitous in the ocean and result from disturbances to the stable ocean 

stratification. Such disturbances may arise from a variety of sources including wind stress 

fluctuations, variation in atmospheric pressure fields, heavy rain, turbulence, wave action or 

flow over topography (for example tidal flows over the shelf edge in stratified waters may 

generate internal waves - the so called internal tides). In particular, large amplitude internal 

waves (which may evolve into isolated waves of fixed form called solitons) are commonly 

produced at continental shelf breaks (and other local topographic features) by tidal forcing. 

These waves have amplitudes of order tens of metres and orbital velocities of order tens of 

cm/s and therefore significantly affect the local stratification and current shear. 

These waves are important from the military point of view because they affect the propagation 

of sound in the surface layers of the ocean. Hence the propagation of these waves and the way 

that they interact with each other need to be predicted in order to make an assessment of their 

effect on acoustic sensors. The currents associated with large amplitude internal waves may 

have a dramatic effect on moored offshore platforms if their presence is not anticipated and 

the enhancement of local mixing due to the waves is also important in understanding the 

distribution of nutrients and pollutants in shelf-edge seas. Because of the inherent non-

linearity, it is not possible to derive analytical solutions of general applicability and so 

numerical methods need to be applied. 

This paper describes some of the ongoing work conducted at the Defence Evaluation and 

Research Agency (DERA) in assessing the potential of the Computational Fluid Dynamics 

code PHOENICS to predict the propagation and interaction of large amplitude internal waves. 

This includes use of sea trial thermistor chain data and Synthetic Aperture Radar imagery of 

the ocean surface.   
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OBJECTIVES OF WORK 

Internal waves are found everywhere in the stratified oceans of the world [1]. They arise due 

to disturbances induced in the essentially stable ocean stratification by wind fluctuations, 

variation in atmospheric pressure fields, heavy rain, turbulence, wave action or flow over 

topography. In particular, large amplitude internal waves (which may evolve into isolated 

waves of fixed form called solitons) are commonly produced at continental shelf breaks (and 

other local topographic features) by tidal forcing. These waves have amplitudes of order tens 

of metres and orbital velocities of order tens of cm/s and therefore significantly affect the 

local stratification and current shear. 

Fig 1a shows a Synthetic Aperture Radar (SAR) image of the sea surface at the Malin Shelf 

(north west of Ireland) taken from the European (Space Agency) Remote Sensing satellite 

(ERS-1) during the summer of 1995. The dotted lines are lines of constant depth 

superimposed on the SAR image. The ‘ripples’ appearing in the image are surface 

manifestations of large amplitude internal waves moving from deep to shallow water. Fig 1b 

shows a contour plot of temperature measurements from a high resolution thermistor chain 

deployed by the Defence Evaluation and Research Agency (DERA) in the same area. The 

vertical axis is depth in metres and the horizontal axis time in units of hours. A large 

amplitude internal wave followed by three smaller waves can be seen from this record. Fig 1c 

shows the SAR surface image of a similar wave train. These waves cause a significant 

disturbance to the local temperature structure (the leading wave, for example, causes a 40m to 

50m downward penetration of warmer water).  The example here shows internal waves of 

depression; internal waves of elevation are also possible. 

Since the speed of propagation of sound in the ocean is a function of temperature, salinity and 

pressure, such large disturbances to the ocean stratification will affect the way sound 

propagates through the ocean and hence the performance of acoustic sensors. In addition the 

waves induce pulses of current which can affect submerged vehicles or diving operations..  

The objective of the current work is to assess the capability of the Computational Fluid 

Dynamics (CFD) code PHOENICS in predicting the evolution and interaction of large 

amplitude internal waves with other large amplitude internal waves and with bathymetry. The 

results will allow operational knowledge to be gained on the associated variability of density 

stratification and current shear in the ocean. 

DESCRIPTION OF WORK 

Just as a disturbance on a water/air surface causes a surface wave which propagates away 

from the disturbance at a finite speed so a disturbance in the interior density stratification of 

the ocean causes a propagating internal wave. These waves propagate at much smaller speeds 

(~1-2m/s maximum) than their surface counterparts (because of the smaller, driving density 

differential) and have periods typically ranging from minutes to many hours. Internal waves 

with small amplitudes can be treated with linear theory, but for the larger amplitude waves 

non-linear effects are important. Non-linear effects tend to cause a steepening of the wave 

whereas dispersive and (the smaller) dissipative effects cause the wave to broaden. If a 

balance is achieved between these two competing effects then the wave propagates unchanged 

(the solitary wave).  

In general internal waves may propagate through the ocean depths, and are not confined only 

to the ocean pycnocline (the region of largest density variation). However, the large amplitude 

internal waves discussed here do propagate along the pycnocline. These waves may have 



amplitudes upto 100m, with horizontal scales of many hundreds of metres and phase speeds 

upto 2m/s. The orbital velocities associated with the larger amplitude of these waves may be  

as large as 1m/s.  

Weak non-linear effects may be described mathematically ([2], [3] and [4]) using perturbation 

series about the linear state. If the perturbation parameter is chosen equal to the ratio of wave 

amplitude to water depth then analysis results in the familiar Korteweg de Vries (KdV) 

equation which includes first order non-linear corrections and the Fully Extended Korteweg 

de Vries (FEKdV) equation which includes first and second order corrections. The choice of a 

different perturbation parameter (see [2]) results in the Extended Korteweg de Vries (EKdV) 

equation which also includes first and second order non-linear corrections but which has more 

general applicability to large amplitude waves (and which may be applicable for a range of 

wave amplitudes from small to large under certain circumstances [2]). These equations can be 

solved in closed form for special cases and can be integrated very quickly with high accuracy 

for more general cases, but require increasing sophistication and modification to deal with 

interacting waves in three dimensions, generalised stratification and variable bathymetry.  

The EKdV equation for the displacement,  of the interface at range position x and time t in a 

two layer system is [2],  

Where c,  and  are constants (see [2] for details).With =0 this reduces to the KdV 

equation. 

This equation has a solitary wave solution of amplitude a of the form 

Where and Cm are constants (see [2] for details). 

The present analysis utilises PHOENICS to solve the full non-linear equations of motion 

which (using the standard notation) are, 

Where  is 1 for mass conservation, u, v or w for momentum conservation and h for energy 

conservation. These equations are solved for generalised stratification and arbitrary 

bathymetry in 2-D or 3-D cartesian coordinates. Initial waveforms are prescribed in the 

domain either from solitary wave solutions to the perturbed equations of motion or from 

measured waveforms in the ocean. The ocean surface is represented as a rigid lid to good 

approximation since the surface elevations induced by internal waves are small compared to 

the internal wave amplitude. The lateral boundaries may be either solid, cyclic (x-direction), 

or inflow or outflow (fixed pressure). In particular, the inflow boundary condition is used to 

render travelling waves stationary or near stationary by applying an inflow velocity equal to 

or approximating the wave phase speed.  
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The analysis in this paper treats the ocean surface and ocean bottom as free-slip boundaries 

although provision has already been included in the Satellite and Ground modules for non-

linear surface and bottom stresses. Similarly, although coding has been included for 

turbulence modelling using the k,  model with buoyancy correction, results are presented 

here assuming that the flow is laminar (diffusive effects are generally considered to be smaller 

than dispersive effects).  

PHOENICS SETTINGS 

The settings below are the main settings for a 2-D case with the x axis horizontal and the y 

axis vertical. 3-D cases have similar settings with the z axis in the vertical and the x and y axes 

running horizontally, though the spatial grids are necessarily much coarser (40m in the 

horizontal and 5m in the vertical directions). 

Satellite 

Group 1; set TITLE, various REAL, INTEGER, BOOLEAN constants. 

Group 2; set STEADY=F, set time step typically 20s. 

Group 3; set CARTES=T, set x lateral grid cell typically 10m. 

Group 4; set y vertical grid cell typically 1m.   

Group 7; Solve(P1,U1,V1,H1); Store(TMP1,PRPS,DEN1). 

If x-direction cyclic boundary required: 

Group 8; XCYCLE=T. 

Seawater properties: 

Group 9; RHO1=GRND1; TMP1=GRND2 

Initial wave form read into Ground; define bathymetry (fixed gradient slope); lateral 

boundaries: 

Group 11; INIVAL patch type for U1 and H1 with GRND value; 

INIVAL patch type for PRPS with coefficient of 0.0 and value 199; 

Patches as required for lateral (x-direction) boundaries, with pressure specified in Ground and 

(constant) U1 velocity specified explicitly for inflow boundary. 

High order spatial discretisation scheme; full density with reduced pressure: 

Group 13; Scheme(KOREN,ALL); 

BUOYA=0.0; BUOYB=-9.81; BUOYC=0.0; BUOYD=mean seawater density 

Patch(BUOY,PHASEM,1,NX,1,NY,1,NZ,1,#NREGT) 

Coval(BUOY,V1,FIXFLU,GRND2). 

Group 15; LSWEEP=30. 

Group 17; LINRLX of 0.7 for P1; FALSDT of 500*XULAST/NX for U1,V1,H1. 

 

 

 



Ground 

Group 1; read in initial density and U1 velocity fields. Note that the U1 velocity field initiates 

the direction of propagation of a wave with a symmetric profile. Map density to H1 and 

calculate vertical pressure profile for fixed pressure lateral boundary. 

Group 11; set F array VALUES for U1 and H1 from Group 1 input data. 

Group 13 (section 12); set F array VALUES for P1 from Group 1 pressure calculations. 

Group 19 (section 8 ); include coding to pick out mean density contour of wave for output. 

PRESENTATION OF RESULTS 

In order to assess the capability of PHOENICS a number of cases were considered: 

1. Propagation of small and large amplitude 2-D solitary internal waves in a two layer fluid and 

comparison with analytical solutions.  

2. Interaction of colliding 2-D large amplitude internal waves in a two layer fluid. 

3. Propagation of 2-D small and large amplitude internal waves up a slope in a two layer fluid. 

4. Propagation of 2-D large amplitude internal wave up a slope and impingement on slope in a 

two layer fluid. 

5. Propagation and interaction of 3-D large amplitude internal waves in a continuously stratified 

fluid.  

6. Propagation and interaction of 3-D large amplitude internal waves in a continuously stratified 

fluid with variable bathymetry. 

Results from these cases are presented in figs 2 to 8. The water depth for all the 2-D cases is 

140m with the lower layer occupying a depth of 90m (density 1027.26 kg/m
3
) and the upper 

layer a depth of 50m (density 1026.73 kg/m
3
). These parameters are chosen so that the EKdV 

model gives good results for both the small amplitude and large amplitude internal waves [2]. 

The cell sizes in the x (horizontal) and y (vertical) directions for the 2-D cases are respectively 

10m and 1m and the time step is 20s. The slope gradient used in cases 3 and 4 is 0.05 which is 

much larger than most continental slopes in the ocean (which generally have slopes <<0.1) 

and more characteristic of the slopes in lakes but which is used here in assessing extremes in 

capability. 

For the 3-D cases the fluid is continuously stratified and the water depth is 140m. The density 

stratification is representative of the Malin Shelf region in summer. The cell sizes in the x and 

y directions are 40m. The cell size in the z (vertical) direction is 5m. The time step is 10s.  

Initial tests were performed on a large amplitude internal wave propagating in a two layer 

fluid using the UPWIND, SMART, KOREN and UMIST numerical schemes. The UPWIND 

scheme was clearly more diffusive than the latter three schemes despite a seemingly adequate 

resolution of the wave on the grid. However, there was little to choose between the latter three 

schemes and KOREN was selected because favourable experience had already been gained 

with the scheme in solving other problems. Satisfactory convergence was then achieved for all 

the cases considered using the spatial and temporal discretisations and relaxation specified 

under PHOENICS SETTINGS. Grid independence has, so far, only been assessed for the first 

case and is discussed below. Computer storage and time for execution is only a serious 

problem with the current computing arrangements for the 3-D cases and has necessitated the 

use of a smaller domain and coarser spatial resolution for these cases (see above). 



DISCUSSION 

The first case considers the propagation of 5m and 18m amplitude internal solitary waves. For 

the 5m wave, the KdV, FEKdV and EKdV solutions are essentially the same and the wave as 

it propagates is expected to retain the shape determined by the solution of these equations. Fig 

2a shows the initial waveform (the solution of the KdV equation) used in the PHOENICS 

simulation. Cyclic boundary conditions are applied in the x direction. Fig 2b shows the 

waveform 6000s later in the simulation. It can be seen that although the wave amplitude has 

decreased from 5m to 4.3m the shape of the wave is still well represented by the soliton 

solutions. The amplitude decrease for this case is perhaps not too disappointing bearing in 

mind the fact that with a 1m vertical cell size there are only 5 cells  resolving the wave shape 

in the vertical. 

For the 18m wave, the best solution is anticipated from the EKdV model and the KdV and 

FEKdV solutions are expected to be inaccurate [2]. To test this out, the PHOENICS 

simulation is initialised with the EKdV solitary wave solution shown in fig 3a. It can be seen 

that this solution differs considerably from the KdV and FEKdV solutions. For this case an 

inflow boundary was used on the east boundary (towards which the wave propagates) and a 

fixed pressure boundary on the west face boundary downstream of the wave. The inflow 

velocity was chosen to be the phase speed of the wave (0.4m/s) from the EKdV solution. Fig 

3b shows the results of the simulation after 10000s. The PHOENICS results are shown to be 

in very good agreement with the EKdV solitary wave solution. For this case there is good 

vertical resolution of the wave and consequently very little reduction in the wave amplitude. 

Also the simulation shows no movement of the wave, confirming that PHOENICS reproduces 

the correct phase speed.  

Grid sensitivity tests were carried on the above 18m wave propagation case. Results with 

halving the time step to 10s showed no significant change, but oscillations started to appear 

when a time step of 40s was used. Increasing the vertical grid cell size from 1m to 2m and 

then to 5m showed negligible change in results. This was also the case when the horizontal 

grid cell size was increased from 10m to 40m in combination with the changes in the vertical 

grid size.  

The results from the second case simulation are shown in figs 4a to 4d. Here the 2-D domain 

(with cyclic east/west boundary conditions) is initialised with two 20m EKdV solitary waves 

with U1 velocity fields for each wave chosen so that the waves move towards each other. This 

is the situation shown in fig 4a. Fig 4b shows the waves interacting with an approximate 

doubling of the wave amplitude. Fig 4c shows the waves emerging from the interaction and 

fig 4d shows the waves again as separate entities (with approximately the same amplitude as 

the original waves) travelling away from each other. The broadening of the contours in the 

vicinity of the interaction region indicates an enhanced mixing effect there. 

Figs 5a to 5d show the effect of introducing bathymetry in the form of a slope and constant 

depth shelf (case 3). Figs 5a and 5b illustrate the effect of a 5m amplitude KdV solitary wave 

travelling up the slope. The remaining figures show the effect on a much larger amplitude 

20m EKdV solitary wave. The steepening effect on the wave due to the reduction in phase 

speed with depth is clearly shown in each case, though for the larger amplitude wave it is 

much more severe as the wave interacts more directly with the bathymetry (the wave is about 

to break).  

The direct interaction of a large amplitude internal wave with the bottom slope is shown in 

more detail in figs 6a to 6d (case 4). Here a 20m amplitude EKdV solitary wave is shown 



breaking on the slope (figs 6c). The downwash from the slope and a strong vortex at the base 

of the wave are clearly indicated in the velocity vector plot of fig 6d (corresponding to the 

wave position in fig 6b). The waves seen on the outer edge of the downwash layer are 

probably due to the non-uniform stepped nature of the slope rather than some interfacial 

instability. The characteristics of this simulation are qualitatively similar to the experiments 

reported in [5].  

Fig 7a shows a SAR sea surface image of the Malin Shelf area. Waves marked as B1 and C1 

moving shorewards have interacted to form a third stronger wave A1. A 3-D PHOENICS 

simulation (case 5) has been set up in order to assess the capability of dealing with interacting 

waves of the type shown in fig7a. A rectangular domain with solid free slip boundaries has 

been initialised with cylindrical waves (taken from the solitary wave solution to the KDV 

equation) with origin along the south east and south west corners of the domain. This initial 

situation is shown in fig 7b where the sides of the domain are contoured with the density and 

the surface is contoured with the V1 velocity (the surface velocity magnitude has been used in 

later simulations). The waves propagate out towards the centre of the domain where a wave-

wave interaction takes place (qualitatively similar to the SAR image). Note the rapid decay of 

the waves due to radial spreading. Also there are some small errors which cause some 

asymmetry in the simulation (fig 7e surface plot). 

Figs 8a and 8b show the same simulation but over an axisymmetric sinusoidal seamount of 

maximum height h having the form h*sin(x/XULAST)*sin(y/YVLAST)  (case 6). In this case 

the surface pressure has been used to trace the wave propagation. Fig 8a shows the retardation 

of the waves towards the centre of the domain as they pass over the shallowest depth (in 

comparison to the waves travelling along the east and west boundaries of the domain where 

the water is deeper). Fig 8b also shows the wave steepening taking place over the central 

section of the seamount.  

CONCLUSIONS 

This work constitutes the first stage of an ongoing assessment of the capability of the 

PHOENICS code in representing the ocean structure associated with the propagation and 

interaction of large amplitude internal waves. Six cases have been defined to form an initial 

basis for testing this capability. Very good comparison with available theory has been 

obtained for the first case involving propagation of small and large amplitude solitary waves 

in a two layer fluid. The remaining cases are more complicated and are not as amenable to a 

simple closed form solution but the simulations appear physically plausible and realistic and 

encourage further investigation using PHOENICS.  

RECOMMENDATIONS 

Further work will be carried out using PHOENICS with particular attention being paid to 

comparison with available theory, experiment and DERA trials for internal wave-wave 

interaction and internal wave-bathymetry interaction. Attention will be directed towards a 

smoother representation of bathymetric features using a partial porosity treatment or body-

fitted grid. The possible use of a higher order temporal integration scheme will be also be 

explored.  
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