

AGG – Automatic Grid Generator for USP PHOENICS
By V I Artemov, July 9 2009

Contents

1. SUMMARY ... 2

2. THE ALGORITHM OF AGG... 3

2.1. PREPARE STRUCTURED GRIDS ... 3
2.2. READ VR-OBJECT AND ITS PREPARING .. 4

2.3. SCAN ALL VR-OBJECTS BY RAY-ALGORITHMS .. 4
2.4. THE BUILDING CELL TREE BY MEANS REFINEMENT ALGORITHM .. 5
2.5. CREATION UNSTRUCTURED CELL, FACES AND VERTICES ... 7
2.6. THE BOUNDARY CONDITIONS, THE SOURCES AND INITIALIZATION ... 9
2.7. OUTPUT USP FILES .. 10
2.8. FILES FOR PARAVIEW POSTPROCESSOR .. 11

3. EXAMPLES .. 12

3.1. 2D CASE: MORE OBJECTS .. 12
3.2. 2D CASE: TURNED CHANNEL .. 13
3.3. 3D CASE: MODEL OF THE BUILDINGS .. 15
3.4. 3D CASE: CAR .. 16
3.5. 3D CASE: ASMO PROJECT .. 17

4. NEW POSSIBILITIES ... 20

4.1. INFOB IN-FORM OPERATORS ... 20
4.2. SMOOTHING BOUNDARY CELLS ALGORITHM ... 23

Scan stage by Ray-algorithms ... 23
Stage of refinement process .. 23
Preparing SBC cells: Moving Vertices .. 23

4.3. SBC EXAMPLES .. 25

AGG Automatic Grid Generator 2

1. Summary

What is AGG ?
AGG is a part of program - preprocessor USPGrid for creating unstructured Cartesian
grid with local refinement (ACM - Adaptive Cartesian Mesh). The Main feature of AGG
is an automatic mode of the building the grid.

Input data for AGG
As input data for creating of the grid is used coarse structured PHOENICS grid and set
of VR/Patch-Objects, defining process of the refinement the coarse grid. As such object
are used:

 Blockage Fluid/Solid VR objects with fixed PRPS;

 Blockage VR objects with PRPS = 198 and 199;

 Usual VOLUME/CELL patches which set PRPS;

 2D Plate objects (external or internal);

 2D Inlet/Outlet objects (include WIND_PROFILE Object);
The above three types are defined by facets; the next by formulae.

 INFOB operators of In-Form, for which is set PRPS by operator (INITIAL;
The parameters for creating:

 MaxLevel – max level of refinement (the level of coarse grid is zero);

 NoLayers – the number of cell layers with the same level; is used for smoothing
neighbor levels (default value = 2);

 InOutLevel – min level of refinement for cells near surface of Inlet/Outlet objects
(default value = 1);

 PlateLevel – min level of refinement for cells near surface of Plate objects
(default value = MaxLevel);

The Rules of building
For building of the grid are used following rules:

1) Near to surface of Blockage Object must be a cells with level = “Maxlevel”;
2) Near to surface of Inlet/Outlet Objects must be a cells with level not greater then

“InOutLevel”;
3) Near to surface of Plate Object must be a cells with level not greater then

“PlateLevel”;
4) The cells, placed inside Blockage objects with PRPS = 198/199, is removed

from output grid;
5) The cells of the same level must have the layers structure: for any cell can to

select the direction, in which exists “NoLayers” cells with this level;
6) The boundary surface of cells with different levels must be it is enough smooth:

for any cell the number of neighbors’ of other level must not exceed 3 in 2D case
and 4 in 3D case;

7) Is not allowed neighborhood of cells, which levels differ more than on unit.

The algorithm of AGG is very “simple”:

1) When a cell is refined, there are created 4 (in 3D case) or 2 (in 2D case) equal
child cells;

2) In process of the partition is created cells Tree, beginning with cells of coarse
grid. For this the parent cells index is stored in child cells. The Depth tree is
“MaxLevel”. The Tree in AGG is used for quick finding of neighbors’ and for
looping all “bottom” active cells in tree.

AGG Automatic Grid Generator 3

3) The cell is marked for refinement, if:
- cell contain the surface of any object and not achieved the necessary level of
cell (MaxLevel, InOutLevel, PlateLevel);
- the cell is marked for refinement by smooth- or layers- algorithms;

4) The refinement process is running in cycle, starting from cells of the coarse grid.
The Process is stopped, when cells, marked for refinement, are absent.

In detail this algorithm is described below.

Output of AGG
The important feature of ACM grids is that they lie between two extremes: structured
grid and completely unstructured grid. This allows on the one hand working with grid,
using two unstructured lists - a Cells and Faces. On the other hand, for calculate of the
geometric features of cell and face possible to use the structured indices. For this AGG
creates the 1D arrays of the faces Fine-cell: a structured grid for case, when all coarse
cells are refinement to MaxLevel:

FiXP(1:NFX), FiYP(1:NFY), FiZP(1:NFZ)

The any cell in tree are used three fine-index (IFX, IFY, IFZ), which are an index of left
lower fine-cells for given cell.
The following objects are created as result of work AGG:

 UNCells – List of all cells;

 UNFaces – List of all faces;

 UNVertex – List of all vertices of cells.

 UNObjects – List of objects;
which used by USP Earth.
For visualization by means of ParaView-postprocessor, VTK-files are created.

2. The Algorithm of AGG

How AGG works:

1) Prepare structured grids;
2) Read VR-object and its preparing;
3) Scan all VR-objects by Ray-algorithms;
4) Create Tree cells by refinement algorithm;
5) Create list of unstructured cells;
6) Create list of unstructured faces;
7) Check of unstructured cells and faces;
8) Create list of unstructured vertices of cells;
9) Create list of unstructured objects;
10) Create files for USP-solver;
11) Create VTK-files for ParaView.

2.1. Prepare structured grids

For work AGG uses two structured grid. First grid is initial coarse grid (CoarseGrid),
created by User in VR-Editor:

Xface(1:NCX), Yface (1:NCY), Zface (1:NCZ),

(These arrays are defined East/North/High face of cell). This grid is read from EARDAT.

AGG Automatic Grid Generator 4

The second grid is grid with max level of refinement “MaxLevel” (FineGrid):

FiXP(1:NFX), FiYP(1:NFY), FiZP(1:NFZ)
FiXface(1:NFX), FiYface(1:NFY), FiZface(1:NFZ)

where
NFX = NCX*2MaxLevel , NFY = NCY*2MaxLevel, NFZ = NCZ*2MaxLevel
FiXFace() - Right face of cell,
FiXP() - center of cell.

The cells of FineGrid is created from CoarseGrid by divided every coarse cell by
2MaxLevel equal cells. Indices of this grid bellow be marked as

 ifX , ifY, ifZ
and will be used for structured numbering cell all level. For cell with level < MaxLevel
these indices is indices of its left lower fine-cell.

2.2. Read VR-object and its preparing

For create grid from SPEDAT is selected VR-objects with OBJTYP =
Blockage, Plate, Inlet and Outlet.
AGG is stored the objects information in list ARObjects() of structure:

type TARObject ! type to describe structure of one object
 character*8 ObjName
 …
 integer IBF_F(3),IBF_L(3) ! indices BoundBox on finest grid
 …
 integer NoFacets ! amount of faces in FACETDAT
 Type(TARRect), pointer :: Facets(:)
 integer(2) PRPS
end type

Here
ObjName - the name of object;
PRPS - value of material PRPS of Blockage object;
IBF_F(3),IBF_L(3) - fine-indices Boundary Box of object;
Facets(:) - list of prepared faces of object.

For simplification of the Ray-algorithm list ARObjects() is sorted so that in the beginning
are Blockage objects.
The List ARObject() is used only in algorithm of the scan. After termination of the
algorithm this list is destroyed for free of memory.

2.3. Scan all VR-objects by Ray-algorithms

For the process of the refinement of cell necessary quickly to get the next information:
1) There contain or not the cell intersection with surface one of the object;
2) if intersection there IS, that necessary to know the index ObjID this object in

array ARObject();
3) if intersection NO, then necessary to know PRPS and ObjID object, inside which

is located cell; if cell is located outside of all objects, then its PRPS is equal
DomainPrps and ObjID = 0.

For creation of this information are used Ray-algorithm, but for storing - an arrays of the
structures:
Type TRay

AGG Automatic Grid Generator 5

 integer(1) NoCross
 integer(1),pointer:: TypeCross(:)
 real,pointer :: Cross(:)
 integer(2),pointer:: Prps_Before(:)
 end type

Variable TRay is described intersections of ray with all objects from ARObjects():
NoCross - number of intersections; if NoCross = 0, then memory

 for arrays Cross(), … is not allocated;
Cross(NoCross) - coordinate of intersection points in ascending order;
TypeCross(NoCross) - type of intersection:
 tcrVOL - with boundary of Blockage Object;
 tcrSURF - with boundary of Inlet/Outlet Object;
 tcrWALL - with boundary of Plate Object;
Prps_before(NoCross+1) - PRPS for cells, is located before current intersection;

The Scan is running on three directions through all centers of fine-cell. Three arrays are
used for this

Type(Tray) RayX(NFY,NFZ), RayY(NFZ,NFX) и RayZ(NFX,NFY)

For filling this arrays:

1) Make loop over all object from ARObjects();
2) For every object (CurObject) make scan by three direction scaDir = 1(X), 2(Y),

3(Z);
3) The scan in direction scaDir execute only for rectangle of Fine-indices of object

iabs = IBF_F(scaAbs) … IBF_L(scaAbs)
iord = IBF_F(scaOrd) … IBF_L(scaOrd)
where values of scaAbs and scaOrd is dependent from Ray-direction; below is
using scaDir = Z, for which scaAbs=1, scaOrd=2. For every File-cell select ray
with coordinates xRay= FiXP(iabs), yRay = FiYP(iOrd) and search all intersection
points.
For this are examined all facets of object CurObject%Facets(1:NoFacets) and
are found (or are not found) ray cross point with each facets. This points are
stored in Type(Tray) work variable CurRay;

4) Make check of correctness of crossings for CurRay;
5) CurRay Points is added to RayZ(iAbs,iOrd). For this is used algorithm of

overlapped objects: the existing cross-points overlapped previous intersections.

2.4. Building cell tree by means refinement algorithm

 For procedure of the splitting the cells are determined in the tree form. For cell
description is used the structure

type TARCell
 integer*2 ifx,ify,ifz ! indices of structured grid for FINE level
 integer*1 lev ! level of cell (zero based)
 type(TARCell), pointer :: Childs(:) ! always 4 childes for 2D and 8 for 3D
 type(TARCell), pointer :: Parent
 …..
 integer(2) PRPS ! PRPS for CELL Blockage Object
 ….
 logical*1 MakeRef
 integer*1 TagLayer
 integer UnID

AGG Automatic Grid Generator 6

end type

Here
ifx,ify,izx - structured fine indices of cell;
lev - level of refinement (0 … MaxLevel);
Parent - parent cell of previous level;
Childs(:) - child cells of next level;

In the beginning is created array of cells, correspond to CoarseGrid

Type (TARCell) ARCells(1:NoARCell)
NoARCell = NCX*NCY*NCZ

As index ID is used
 ID = icx + NCX*(icy-1) + NCX*NCY*(icz-1)
where icx, icy, icz – structured indices of CoarseGrid.
This cells:

 don’t have childs,

 are filling with PRPS = DomainPRPS;

Refinement process

Refinement of cells is made in the first cycle, consisting of stage:
1) Mark cells for refinement;
2) Making the layers of cells;
3) Refinement one level;
4) Smoothing layers of cells;

The Cycle finishes if not more cell for splitting.
Further is making second cycle of the smoothing - a removing "holes".
And at the end is made final processing of cells with level MaxLevel and containing
cross points.

Mark cells for refinement
All active tree cells are examined and switch on the cell flag MakeRef.
On the first stage are checked:

 if level of the cell Lev >= MaxLevel, that cell don’t split (MakeRef = .FALSE.);

 if PRPS cells is 198 or 199, that cell don’t split too.
On second stage all rays from RayX, RayY and RayZ are analyzed:

1. if cell contains the cross point with Blockage-object, that cell is marked for
refinement;

2. if cell contains only cross point with Plate-object and its Lev < PlateLevel, that
cell is marked for refinement;

3. if cell contains only cross point with Inlet/Outlet-object and its Lev < InOutLevel,
that cell is marked for refinement;

4. if cell does not contain the cross point, is made final calculation its PRPS. For
this is used ray array PRPS_before (values are used between cross points,
containing cell).

If cell is marked for refinement (MakeRef=.TRUE.) then for it is set the layer TagLayer =
1.

Making the layers of cells
Is set the number of current layer CurTagLayer = 1.
For creating layers are examined all cells with TagLayer=CurTagLayer. For each cell by
means of arGetOneNeighb are found all neighbour cells and for this neighbour cells are
set the flag MakeRef =.TRUE. and TagLayer = CurTagLayer +1.

AGG Automatic Grid Generator 7

These actions are repeated NoLayers time.

Refinement one level
For this are examined all cells, marked for refinement, and for each are created child
cells - an array Childs(NoChild). The number of child cells depends on dimensionality of
the problem. For 2D case NoChild = 4, for 3D case NoChild = 8. In each child cell is
storage reference to the current cell - Parent. All properties of child cell inherit from
parent (for example, PRPS).

Smoothing layers of cells
After refinement will appear the cells, neighbours of which with level will can differ more
than on unit. As in algorithm USP PHOENICS such cells not used, that is made process
of the smoothing. For this are examined all active cells (CurCell) and are examined all
their neighbours (Neighb).

 If level CurCell%lev < Neighb%lev - 1, that cell CurCell is marked for refinement.

 If level CurCell%lev > Neighb%lev + 1, that neighbour Neighb is marked for
refinement.

After that it is made refinement once again. This process is repeated until such cells not
will.

Removing “Holes”
On completion of the refinement process in tree it is possible appearance cell, having
"much" neighbors of other levels (for example, single "columns" of cells). For smoothing
such cell is used algorithm of the layers smoothing with the another preparing function
of cells.
In this algorithm for each cell is counted the number of neighbors with level, bigger than
current cell. If the number of such neighbors more than 2 (2D case) or than 3 (3D case),
that cell is marked for refinement.

Final processing cell tree
After above procedures in tree remained the cells, which are on object boundary and:

1) its level = MaxLevel;
2) its PRPS is not determined;
3) contain one cross point with one of the object.

In the current version for such cell is used the model “whole” cell:

 if cross point Cross(IC) <= point of the centre of the cell ZC, that PRPS cell =
Prps_before(IC): the cell is located left of the boundary;

 if cross point Cross(IC) > point of the centre of the cell ZC, that PRPS cell =
Prps_before(IC+1): the cell is located right of the boundary;

Remark:
If will use the algorithm SBC (Smoothing Boundary Cell) , in this place of the algorithm
will create Cut-cells (see below).

2.5. Creation unstructured cell, faces and vertices

For USP, it is necessary to convert the created cell tree to list of unstructured cells and
cell faces. For the postprocessor and SBC model it is necessary to create the list of the
cell vertices and list of links cell to its vertex.

AGG Automatic Grid Generator 8

Creation unstructured cell
In AGG unstructured cells are described by variables

type TUNCell
 integer*2 ifx,ify,ifz ! indices of FineGrid
 integer(2) lev ! level of cell (zero based)
 integer(2) PRPS
 integer Nodes(8)
end type
type(TUNCell), pointer :: UNCells(:)
integer NoUnCells

where Nodes(8) - an array of vertex indices.

For createing UNCells(:) are examined all active cells with PRPS not equal 198 and
199. Information from tree cells is moved into unstructured cells. The Sequence of the
unstructured cells corresponds to the order of their examined in arVisitCells. For the
next creating the list of the faces in variable UnID of tree cell is saved index of the
unstructured cell in UNCells array.

Creating the list of the unstructured faces
In AGG unstructured faces are described by variables

type TUNFace
 integer negCell,posCell
 integer(2) FLAG
 ….
end type
type(TUNFace), pointer :: UNFaces(:)
integer NUNFaces

where
negCell, posCell - an unstructured cell indices in UNCells(), connected with face;
 for boundary faces one of the indices is a zero;

The Field FLAG contains the set of bit flags:
ffBound - any boundary face;
ffSouth_North - not boundary on South-North direction
ffWest_East - not boundary on West-East direction;
ffLow_High - not boundary on Low-High direction;
ffSurface_FS - Fluid-Solid Surface;

For creating the faces list in ARCells- structure is added field

type TARCell
 integer, pointer :: FacesID(6,4) ! first index - drWest...; second - 1:4
end type

which contains the unstructured indices of the cell faces. The First index describes the
direction of face (drWest drHigh), the Second - a relative index of face.

For creating the faces list is looked over all active cells and for each cell “CurCell” is
examined its neighbour cells – “NB” in direction “iDir”:

1. if level of the neighbour NB%lev > level of CurCell%lev, that not to do nothing;
2. if FacesID(iDir,1) of cell is not equal zero, that face is already created;
3. to add the new face in list of the faces UNfaces() and set its properties;

AGG Automatic Grid Generator 9

4. to write index of this face into FacesID of cells CurCell and NB.

After creating the list of unstructured cells and faces cell tree is unused and its memory
is freed!

Creating the list of vertices
Cells vertices are described by variables:

Type TUNNode
 integer(2) IFX,IFY,IFZ
 end type

 Type(TUNNode),pointer :: UNNodes(:)
 integer NUNNodes

 where
ifx,ify,ifz - fine-indices West-South-Low of fine-cell vertex.

The linkage of the vertices with cells are described by array Nodes(8) of the cell, in
which is stored indices of the vertex in list UNNodes. The rules to numbering the
vertices of cell can be free. In AGG is used numbering of the package ParaView and
Tecplot(see Fig. 1).

Z

Y

X

1 2

3 4

5
6

7 8

Fig. 2.1

2.6. The boundary conditions, the sources and initialization

In structured PHOENICS for initializing PHI-variables, setting of the sources and
boundary conditions are used patches, connected with VR-objects of the different types.
In USP for this purpose is used list UNObject() of the following structure:

type TUNObject
 character*8 Name ! name of object
 integer(2) ObjType ! type of object
 integer(2) IBF_F(3),IBF_L(3) ! indices BoundBox on finest grid

 integer NoFaces ! amount of faces
 integer, allocatable :: FacesID(:) ! array of indices of faces if it is needed
 integer NoCells ! amount of cells
 integer, allocatable :: CellsID(:) ! array of indices of cells if it is needed
 integer(2) NoSources ! Number sources with
 type(TSource), allocatable :: Sources(:) ! array of sources for this objects
end type
Type (TUNobject) UNObjects(:)
integer NoUNObjects

AGG Automatic Grid Generator 10

The Structure TSource describes one source or one initialization for one PHI-variable:

type TSource ! type to describe structure of data for sources of objects
 integer(2) MPHI ! index of PHI in CHAM's order
 integer(2) TypeSource ! type Source patch
 real Co, Val ! Co and Val for source
 integer(2) TFst,TLst ! first and last step of time for transient cases
end type

where TypeSource is the type of source connected with VR-object:

srCELL - Volumetric Cell Source,
srVOLUME - Volumetric Source;
srSURFACE - Surface Source;
srWALL - Wall Surface Sourcre;
srINIT - Initial Values

With standpoint of the geometries UnObject is list of unstructured cells and (or) list
unstructured faces. In the current version of AGG for creating UNObject are used the
same objects, as for building of the grid i.e. the objects of the type:
Blockage, Plate, Inlet, Outlet.

2.7. Output USP files

The result report AGG is saving in file usp_grid_log.
For running USP Earth the program AGG creates four files with unstructured
information:

 usp_cells - a description cells UNCells;

 usp_faces - a description faces UNFaces;

 usp_vertex - a description vertices UNNodes;

 usp_objects - a description objects UNObjects;
Below is described the structure of these files.

File “Usp_cells”

 Write(LU) SIGNATURE_CELL, & ! 16 byte
 Title ! 48 byte
 Write (LU) NFX,NFY,NFZ, MaxLevel
 Write (LU) (XFine(ix),ix=1,NFX)
 Write (LU) (YFine(iy),iy=1,NFY)
 Write (LU) (ZFine(iz),iz=1,NFZ)
!
 Write (LU) NoUNCells
 DO ic = 1,NoUnCells
 Write (77) UnCells(ic)%PRPS, IXF-1, IXL-1,IYF-1,IYL-1, IZF-1,IZL-1
 ENDDO

where
IXF = UnCells(ic)%ifx; IXL = IXF + 2

UnCells(ic)%lev
 – 1 - fine-indices first and last fine-cells of

current cell.
SIGNATURE_CELL - signature string for check file.

File “usp_faces”

 Write(LU) SIGNATURE_CELL, & ! 16 byte

 Write(LU) NoUNFaces

AGG Automatic Grid Generator 11

 do ifc = 1,NoUNFaces
 Write(LU) UNFaces(ifc)%FLAG, UNFaces(ifc)%negCell, UNFaces(ifc)%posCell
 Enddo

File “usp_vertex”

 write(LU) SIGNATURE_VERTEX
 write(LU) NUNNodes
 DO IV=1,NUNNodes
 write(LU) UNNODES(IV)%IX-1,UNNODES(IV)%IY-1,UNNODES(IV)%IZ-1
 ENDDO
 write(LU) NoUnCells
 DO IC=1,NoUnCells
 write(LU) UNCells(IC)%NODES(1:8)
 ENDDO
 close(LU)

2.8. Files for ParaView postprocessor

For visual examination of created unstructured grid if flag UCRVTK = T, are created two
VTK-files:

 usp_cells.vtk - a file of cells;

 obj_faces.vtk - a file with ObjID is not a zero faces.
The First file contains the unstructured cells as VTK-unstructured grid with
HEXAHEDRON-cells. With VTK-cells is linked two scalar fields - PRPS and ObjID of
cells.
The Second file contains the faces with ObjID <> 0 as VTK-unstructured grid with
POLIGON-Cells. One scalar field -ObjID of face is linked with VTK-cells.
These files allow to visual examine the building grid and to check correctness of the
object boundaries description.
The Examples of the use of these files are shown below.

AGG Automatic Grid Generator 12

3. Examples

Below typical examples (for cases with many objects) are shown.

3.1. 2D case: more objects

This case uses 6 VR-objects.

Fig. 3.1A VR-Editor domain scene

Fig. 3.1B ParaView : file usp_cells.vtk

AGG Automatic Grid Generator 13

Fig. 3.1C ParaView : file obj_faces.vtk

3.2. 2D case: turned channel

In this case is used Blockage Obljects for describe of turned channel.

Fig. 3.2A VR-Editor domain scene

AGG Automatic Grid Generator 14

Fig. 3.2B ParaView : file usp_cells.vtk

Fig. 3.2C ParaView : file obj_faces.vtk

AGG Automatic Grid Generator 15

3.3. 3D case: model of the buildings

Fig. 3.3A VR-Editor domain scene

Fig. 3.3B ParaView : file usp_cells.vtk

AGG Automatic Grid Generator 16

Fig. 3.3C ParaView : file obj_faces.vtk

3.4. 3D case: Car

Fig. 3.4A VR-Editor domain scene

AGG Automatic Grid Generator 17

Fig. 3.4B ParaView : file usp_cells.vtk

Fig. 3.4C ParaView : file obj_faces.vtk

3.5. 3D case: ASMO Project

In this case is used:
Coarse grid = 10 x 10 x 10;
Maxlevel = 6;
WallLevel = 4.
Grid properties:
 No. Coarse structured Cells = 1000;
 No. Fine structured Cells = 262 144 000;
 No. unstructured Cells = 802 135;

AGG Automatic Grid Generator 18

Fig. 3.5A VR-Editor domain scene

Fig. 3.5B ParaView : file obj_faces.vtk

AGG Automatic Grid Generator 19

Fig. 3.5C ParaView : mesh and object surfaces (file obj_faces.vtk and usp_cells.vtk)

Fig. 3.5D ParaView : mesh (file usp_cells.vtk)

AGG Automatic Grid Generator 20

4. New accomplishments

In this chapter are described new accomplishments, included in the new version AGG:
1. work with INFOB objects,
2. work with SBC algorithm.

4.1. INFOB In-Form operators

For creating the grid together with VR blockage objects it is possible to use Volume
INFOB operators BOX, SPHERE and ELLPSD:

(infob at patch1 is box(x0,y0,z0,sx,sy,sz,al,be,th) with infob_1)
(infob at patch1 is sphere(xc,yc,zc,r) with infob_1)
(infob at patch1 is ellpsd(xc,yc,zc,rx,ry,rz,al,be,th) with infob_1)

где
patch1 - name of patch, which is used as restricting boundary box;
infob_1 - object name (for use in initial operator);
x0,y0,z0 - coordinates of left-bottom-low corner of boundary box of object;
sx,sy,sz - size of box;
r - sphere radius;
rx, ry, rz - radiuses of the ellipsoid;
al, be, th - angles of rotation object along X, Y and Z axes.

For use INFOB for building of the grid necessary to set PRPS value for object by means
of operator

(initial of prps is ValPrps with infob_1).

where
ValPrps – numerical value (not formula).

For setting of restricting boundary box can to use usual Patch
PATCH(PATCH1, VOLUME, 1, NX, 1, NY, 1, NZ, 1, 1)

or Dot-Patch
PATCH(.PATCH1, VOLUME, 0, 1000, 0, 1000, 0, 1000, 1, 1)

At AGG-scan of the object all part of the object, outside of patch are cut off.
The objects BOX and ELLPSD can to rotate. As rotation centre is used left-bottom-low
vertex of its boundary box. The Order of the rotation is following:

1) Z rotates about the current Z-axis of the box to TH angle (in radians), anti-
clockwise looking along -Z,

2) Y rotates about the current Y-axis of the box to BE angle,
3) X rotates about the current X-axis of the box to AL angle.

Remark:
1) At rotation of object the place and shape of patch is not changed.
2) As the arguments of BOX, SPHERE, ELLPSD function can to use real

values only. Can not to use In-Form formulas.

On Fig. 4.1 is shown the using BOX function for describe inclined channel.

AGG Automatic Grid Generator 21

The corresponding Q1 operators are:

(initial of prps is 0 with infob_1)
real(sx,sy,sz,th)
th=47/180*3.1416 ! 47 not 45
sx=2*xulast
sy=0.2*yvlast
sz=zwlast
(infob at .patch1 is box(0,0.01,0,:sx:,sy,:sz:,0,0,:th:) with infob_1)
real(COTH,SITH)
COTH=COS(th)
SITH=SIN(th)
(STORED of U_CH is U1*:COTH:+V1*:SITH:)
PATCH(.PATCH1, VOLUME, 0, 1000, 0, 1000, 0, 1000, 1, 1)

Fig. 4.1 The Mesh from rotated BOX function

On Fig. 4.2A,B is shown the using all three functions. The corresponding Q1 operators
are:

(initial of prps is 198 with infob_1)
(initial of prps is 198 with infob_2)
(initial of prps is 198 with infob_3)
real(th)
th=45/180*3.1416 !
(infob at .patch1 is box(0.35,0.35,0.35,0.3,0.3,0.3,0,0,:th:) with infob_1)
(infob at .patch2 is sphere(1.5,0.5,0.5,0.3) with infob_2)
(infob at .patch3 is ellpsd(2.5,0.5,0.5,0.10,0.2,0.3,0,th,0) with infob_3)

 PATCH(.PATCH1, VOLUME, 0, 1000, 0, 1000, 0, 1000, 1, 1)
 PATCH(.PATCH2, VOLUME, 0, 1000, 0, 1000, 0, 1000, 1, 1)
 PATCH(.PATCH3, VOLUME, 0, 1000, 0, 1000, 0, 1000, 1, 1)

AGG Automatic Grid Generator 22

Fig. 4.2A Boundary Faces

Fig. 4.2B The mesh

AGG Automatic Grid Generator 23

4.2. Smoothing Boundary Cells algorithm

By default AGG uses the Whole-Cells algorithm (this algorithm is described above).
The main idea of this method is:
1) After refinement process there are «boundary» Cut-Cell cells – these cells,

which intersect the surface of objects (this cell contain intersection point one of
rays along X, Y or Z, which passes through center of cell).

2) The processing of Cut-Cells is concluded in the setting their PRPS. For this is
used two values PRPS_BEFORE and PRPS_AFTER of intersection point. If
centre coordinate in ray direction is greater then intersection point coordinate,
then is used PRPS_AFTER, else – PRPS_BEFORE.

3) The result: the surface of objects is approximated as “stair-step” surface (set of
faces of whole cells).

In structured PHOENICS for exact approximation of the object surface is used algorithm
of fractional cell - ParSol. This algorithm is very complex because this is connected with
big amount of variants intersection surface with cell. An AGG boundary cell already has
small size (the maximum level of the refinement), so for smoothing object surfaces
possible to use the more simple approximate algorithms. SBC algorithm is such one.

The Main idea of SBC - using topologies unstructured Cartesian Whole-Cells:

1) Boundary Cut-Cells have hexahedral shape: all cells have 6 faces and 8 vertices;
2) The amount of cells don’t changes after using SBC algorithm: can’t to create two

Cut-Cells from one Boundary cell;
3) The smoothing of Cut-Cell is made by moving of cell vertices to intersection

points;
4) In current version SBC-AGG is used the simple moving algorithm (see bellow):

this algorithm does not use analysis different variants of intersection surfaces
with cell.

5) In accordance with (2) this method can be used only for Blockage objects with
PRPS=198 or 199. So that for objects with other PRPS (for example, Fluid-Solid
boundaries) is used old Whole-Cells algorithm.

SBC algorithm is described in detail below.

Scan stage by Ray-algorithms

This stage is run the same as for Whole-Cell model. One difference – the scan is done
not through center of Fine cells, but along their edges.
The amount of rays is increased on one ray in each direction in this case.

Stage of refinement process

For refinement process is used the same algorithm as for Whole-Cell model. There is
only one difference. The cell is Cut-Cell, if it has at least one intersection on one of its
edges. This can bring about small difference in grids a long way from surface object for
SBC and Whole-Cell algorithms.

Preparing SBC cells: Moving Vertices

After completion refinement stage in tree cell remains the cells with level MaxLevel,
having intersection on their own edges - Cut-Cells. For such cells recalculate the cross
point with all its edges and is produced moving the vertices of the cells.

AGG Automatic Grid Generator 24

In current version is used simple algorithm of vertices moving:

1. Vertices of Cut-Cells are moved to their nearest intersection points;
2. No vertex may be moved more than once;
3. First search for and move vertices of “GOOD” cells which have exactly four

intersections on edges parallel to X,Y or Z;
1) Move vertices of not “GOOD” CutCells in X,Y,Z direction along edges of cells;
2) Remove “BAD” cells of which all neighbors are either CutCells or have

PRPS=198/199.
For moving is used tree-loop through all Cut-Cells.

The example of application this SBC algorithm is shown on Fig. 4.3 (the object –
sphere, Coarse grid – 10*10*10, MaxLevel = 3)

Fig. 4.3 The sphere mesh

Thus, SBC algorithm not changed the structure of the main data objects. In addition is
created array of the moved vertices CutNodes().

AGG Automatic Grid Generator 25

4.3. SBC examples

Below is shown several examples of SBC algorithm.

Whole-Cell model

SBC model

Fig. 4.4A Complex Body: Boundary Faces
 (Coarse Grid = 10*10*10, MaxLevel=3, NoCells=72 000)

Whole-Cell model

SBC model

Fig. 4.4B Complex Body: the Mesh 1 (total)

Whole-Cell model

SBC model

Fig. 4.4C Complex Body: the Mesh 1 (detail)

AGG Automatic Grid Generator 26

Whole-Cell model

SBC model

Fig. 4.4D Complex Body: the Mesh 2

Fig. 4.5 Human body: Boundary Faces

AGG Automatic Grid Generator 27

Fig. 4.6 ASMO project: Boundary Faces

Fig. 4.7 Model of the buildings: Boundary Faces

